A Whole New Set of Opportunities and Benefits for Industrial Applications

Challenge
Fire incidents in industrial and domestic environments are often caused by electrical equipment failures like overload, sparks or short-circuits. To prevent the risk of ignition and diffusion of flames, fire resistant materials like concrete, steel or ceramics are used. Once ignited however, the materials in the environment determine how quickly the flames spread, the level of smoke generation, and the time available to control the fire - or allow time to leave the scene. Nearly all organic materials become fuel for the fire. Plastics by definition are based on crude oil or similar organic materials and combust easily.

Opportunities
To increase the safety level and broaden the application opportunities of the use of plastics, flame retardant plastic materials have been developed. Flame retardant materials are defined by various testing methods and standards, which usually determine the self-extinguishing properties under certain conditions. Flame retardant properties can be achieved through specific formulation of the plastic compounds and the selection of the right processing method.

Mitsubishi Chemical Advanced Materials Added Value
General Engineering Plastic stock shapes manufactured in the extrusion process are generally difficult to adjust to flame retardant properties. Our polymer processing expertise and best-in-class-technologies made the development of the new Nylatron® 66 SA FR (Flame Retardant) material possible. It is a multi-purpose flame retardant material according to UL94 V0 that is available in sheets up to 50 mm thickness and rods up to 100 mm diameter.

Why flame retardant materials?
- Time to escape is critical
- Flame retardant materials buy time
- Many factors influence the survival time
Nylatron® 66 SA FR Special Characteristics
- Ertalon® 66 SA based (PA 66) universal flame retardant product
- Flame retardancy UL94 V0 at 1 – 3mm wall thickness
- Compliant with EN 45545-2:2013 R24:HL3 and R26:HL3 for rail applications
- Mechanical property profile similar to Ertalon® 6PLA
- Absence of heavy metals and halogens – RoHS compliant
- Parts manufactured from Nylatron® 66 SA FR can be disposed according WEEE
- Fully compliant with REACH
- Low moisture absorption

Property Overview - Comparison to “Standard” Nylons

<table>
<thead>
<tr>
<th>Property</th>
<th>Nylatron® 66 SA FR</th>
<th>Ertalon® 6 SA</th>
<th>Ertalon® 6 PLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Stress</td>
<td>+</td>
<td>o</td>
<td>+</td>
</tr>
<tr>
<td>Coefficient of Linear Thermal Expansion</td>
<td>+</td>
<td>o</td>
<td>+</td>
</tr>
<tr>
<td>Charpy</td>
<td>o</td>
<td>+</td>
<td>o</td>
</tr>
<tr>
<td>HDTa</td>
<td>+</td>
<td>o</td>
<td>+</td>
</tr>
<tr>
<td>Permanent Temperature</td>
<td>o</td>
<td>o</td>
<td>+</td>
</tr>
<tr>
<td>Maximum Temperature</td>
<td>+</td>
<td>o</td>
<td>+</td>
</tr>
</tbody>
</table>

Typical Applications
- Cable holders
- Cable clamps
- Cable channels
- Connectors

Mitsubishi Chemical Advanced Materials
Portfolio of DIN EN 45545-2
Tested Materials (highlighted in red)

Mitsubishi Chemical Advanced Materials
Portfolio of DIN EN 45545-2
Tested Materials (highlighted in red)

Mitsubishi Chemical Advanced Materials
Integration of Flame Retardant DIN EN 45545-2

Mitsubishi Chemical Advanced Materials
Portfolio of DIN EN 45545-2
Tested Materials (highlighted in red)