Ertacetal® H is Quadrant’s homopolymer acetal grade. It offers a higher mechanical strength, stiffness, hardness and creep resistance as well as a lower thermal expansion rate and often also a better wear resistance than the acetal copolymer.

Physical properties (indicative values)

Properties

Test methods	**Units**	**VALUES**

Colour | - | natural/white/ black

Density | ISO 1183-1 | g/cm³ | 1.43

Water absorption:
- after 24/96 h immersion in water at 23 °C (1) | ISO 62 | mg | 18 / 36

- at saturation in air at 23 °C / 50 % RH | ISO 62 | % | 0.21 / 0.43

- at saturation in water at 23 °C | - | % | 0.20

Thermal Properties (2)

Melting temperature (US, 10 °C/min) | ISO 11357-1/-3 | °C | 180

Glass transition temperature (US, 20 °C/min) (3) | ISO 11357-1/-2 | °C |

Thermal conductivity at 23 °C | - | W/(K.m) | 0.31

Coefficient of linear thermal expansion:
- average value between 23 and 60 °C | - | mm/m.K | 10 x 10⁻⁶

- average value between 23 and 100 °C | - | mm/m.K | 110 x 10⁻⁶

Temperature of deflection under load:
- method A: 1.8 MPa | ISO 75-1/-2 | °C | 110

Max. allowable service temperature in air:
- for short periods (4) | - | °C | 150

- continuously for 5,000 / 20,000 h (5) | - | °C | 105 / 90

Min. service temperature (6) | - | °C | 50

Flammability (7):
- according to UL 94 (3.6 mm thickness) | ISO 5499-1/-2 | % | 15

Mechanical Properties at 23 °C (8)

Tension test (9):
- tensile stress at yield / tensile stress at break (10) | ISO 527-1/-2 | MPa | NYP / 78

- tensile stress (10) | ISO 527-1/-2 | MPa | 78

- tensile strain at yield (10) | ISO 527-1/-2 | % | NYP

- tensile strain at break (10) | ISO 527-1/-2 | % | 25

- tensile modulus of elasticity (11) | ISO 527-1/-2 | MPa | 3700

Compression test (12):
- compressive stress at 1 / 2 / 5 % nominal strain (11) | ISO 604 | MPa | 29 / 49 / 85

Charpy impact strength - Unnotched (13) | ISO 179-1/-� | kJ/m² | no break

Charpy impact strength - Notched | ISO 179-1/-6 | kJ/m² | 10

Ball indentation hardness (14) | ISO 2598-1 | N/mm² | 160

Rockwell hardness (15) | ISO 2039-2 | HRB | 65

Electric Properties at 23 °C (16)

Electric strength | IEC 60243-1 | kV/mm | 20

Volume resistivity | IEC 60093 | Ohm.cm | > 10₁⁴

Surface resistivity | IEC 60093 | Ohm | > 10₁⁴

Relative permittivity εᵣ:
- at 100 Hz | IEC 60250 | - | 3.6

- at 1 MHz | IEC 60250 | - | 3.6

Dielectric dissipation factor tan δ:
- at 100 Hz | IEC 60250 | - | 0.003

- at 1 MHz | IEC 60250 | - | 0.008

Comparative tracking index (CTI) | IEC 60112 | - | 600

Note: 1 g/cm³ = 1,000 kg/m³; 1 MPa = 1 N/mm²; 1 kV/mm = 1 MV/m. NYP: No Yield Point

Legend:

+ : values referring to dry material

++ : values referring to material in equilibrium with the standard atmosphere 23 °C / 50 % RH (mostly derived from literature)

1. According to method 1 of ISO 62 and on discs of 50 mm x 3 mm diameter.
2. The figures given for these properties are for the most part derived from raw material supplier data and other publications.
3. Values for this property are only given here for inorganic materials and not for semi-crystalline (e.g. PET).
4. Only for short time exposure (a few hours) in applications where no or only a very low load is used to the material.
5. Temperature resistance over a period of 5,000/20,000 hours. After these periods of time, there is a decrease in tensile strength – measured at 23 °C – of about 50 % as compared with the original value. The temperature values given here are thus based on the thermal-oxidative degradation which takes place and causes a reduction in properties. Note however, that the maximum allowable service temperature depends in many cases essentially on the duration and the magnitude of the mechanical stresses to which the material is subjected.
6. Impact strength decreasing with decreasing temperature, the minimum allowable service temperature is practically mainly determined by the extent to which the material is subjected.
7. The value given here is based on unfavourable impact conditions and may consequently not be considered as being the absolute practical value.
8. The figures given for the property of dry material (+) are for the most part average values of tests run on test specimens machined out of rods Ø 40–60 mm. Except for the hardness tests, the test specimens were then taken from an area mid between centre and outside diameter, with their length in longitudinal direction of the rod (parallel to the extrusion direction). Considering the very low water absorption of Ertacetal H, the values for the mechanical and electrical properties of this material can be considered as being practically the same for dry (+) and moisture conditioned (+++) test specimens.
9. Test specimens: Type 1 B
10. Test speed: 50 mm/min (chosen acc. to ISO 10350-1 as a function of the ductile behaviour of the material [tough or brittle])
11. Test speed: 1 min/m
12. Test specimens: cylinders Ø 8 mm x 16 mm
13. Pendulum used: 4 J
14. Measured on 10 mm thick test specimens (discs), mid between centre and outside diameter.
15. Electrode configuration: Ø 25 / Ø 75 mm coaxial cylinders; in transformer of according to IEC 60296: 1 mm thick test specimens. Please note that the electric strength of Ertacetal H black can be considerably lower than the figure listed in the table which refers to natural material. Possible microporosity in the centre of polycrystal stock shapes also significantly reduces the electric strength.

This table, mainly to be used for comparison purposes, is a valuable help in the choice of a material. The data listed here fall within the normal range of product properties. However, they are not guaranteed and they should not be used to establish material specification limits nor used alone as the basis of design.