Quadrant High Performance Products and Application Guide

A guide to selection and performance of machinable engineering plastics.
Global Leader in Engineering Plastics for Machining.

Quadrant Engineering Plastic Products (Quadrant EPP) is the world’s leading manufacturer of plastic machining stock.

In 1946, we invented and then patented the first process for extruding nylon stock shapes for machining. The industry we created gives designers more flexibility and design possibilities by producing shapes that can easily be machined into parts. Quadrant assists engineers in selecting the optimum material for their application.

Technical Support from Concept Through Production.

Application and production support when and where you need it. Quadrant’s technical support team works with engineers and machinists from material selection through machining, for optimum performance, productivity and cost.

Quadrant locations around the world offer an experienced technical team and the most comprehensive testing laboratories in the industry. You can count on reliable support at every phase of your project:

• Evaluation of performance needs and application environment
• Material selection – including selection software
• Material certifications
• Regulatory agency compliance
• Set-up and production recommendations from experienced machinists
• A wide range of material selection, design and fabrication guides and tools – all available on the Quadrant Engineering Plastic Products web site, www.quadrantplastics.com

Quality Systems that Ensure Consistency.

From full lot traceability to ISO certifications, Quadrant meets your requirements for consistent quality, performance and machinability. As the first to line mark shapes materials, Quadrant set the standard for traceability on our products right back to the resin lot and production shift. We have also kept pace with industry standards and quality systems to comply with the needs of the industries that your company also serves. Count on Quadrant. It is the inspiration behind our drive to provide the best levels of support for our materials in your applications.
TABLE OF CONTENTS

MATERIAL SELECTION & DESIGN GUIDELINES

- **DYNAMIC MODULUS**
 - **NYLONS (PA)**
 - First Choice for All General Purpose Wear and Structural Components
 - Quadrant Nylon 101 PA66
 - Nylatron® GS PA66
 - Nylatron® GF 30 PA66
 - Nylatron® MC 907 PA6
 - Nylatron® MC 901 PA6
 - Nylatron® GSM PA6
 - Nylatron® LIG PA6
 - Nylatron® LFG PA6
 - Nylatron® GSM Blue PA6
 - Nylatron® NSM PA6
 - Nylatron® 703XL PA6
 - Nylatron® WP PA6

- **SPECIALTY CAPABILITIES**
 - Nylatron® Custom Nylon Casting

QUADRANT PC 1000
- High Impact Strength with Heat Resistance to 250°F

QUADRANT PSU
- Hot Water & Steam Performance to 300°F

QUADRANT PPSU
- Best Impact & Steam Resistance to 400°F

DURATRON® PEI
- High Strength & Heat Resistance, Plus Excellent Dielectric Properties

FLUOROSINT® PTFE
- Most Dimensionally Stable PTFE-Based Product

TECHTRON® PPS
- Excel in Corrosive Environments to 425°F

KETRON® PEEK
- Structural and Chemical Integrity to 480°F

DURATRON® PAI
- Stiffness & Strength at Temperature Extremes

DURATRON® PI
- Thermal Resistance Over 600°F

DURATRON® PBI
- Best Mechanical Properties to 800°F

ERTALYTE® PET-P
- Wear Resistance of Nylon, Dimensional Stability of Acetal
 - Ertalyte® PET-P
 - Ertalyte® TX PET-P

SEMITRON® STATIC DISSIPATIVE PRODUCTS

AVAILABILITY
- Product Size Range Capability

PRODUCT COMPARISON
- Physical Property data for other Quadrant materials like; Nylatron®, Techtron®, and Duratron® are provided on pages 38 through 43.

Page references are included for easy access to specific content.
Effective Selection & Design Techniques

Plastics are increasingly being used to replace other materials like bronze, stainless steel, aluminum, and ceramics. The most popular reasons for switching to plastics include:

- Longer part life
- Elimination of lubrication
- Reduced wear on mating parts
- Faster operation of equipment / line speeds
- Less power needed to run equipment
- Corrosion resistance and inertness
- Weight Reduction

With the many plastic materials available today, selecting the best one can be an intimidating proposition. Here are guidelines to assist those less familiar with these plastics.

Determine whether the component is a:

- Bearing and Wear Application (i.e., frictional forces) or Structural (static or dynamic) Application

Determining the primary function of the finished component will direct you to a group of materials. For example, crystalline materials (i.e., nylon, acetal) outperform amorphous materials (i.e., polysulfone, polyphenylene oxide, or polycarbonate) in bearing and wear applications. Within the material groups, you can further reduce your choices by knowing what additives are best suited to your application.

Wear properties are enhanced by MoS₂, graphite, carbon fiber and polymeric lubricants (i.e., PTFE, waxes).

Structural properties are enhanced by glass fiber and carbon fiber.

Once you have determined the nature of the application (wear or structural), you can further reduce your material choices by determining the application’s mechanical property requirements. For bearing and wear applications, the first consideration is wear performance expressed in PV and “k”-factor. Calculate the PV (pressure (psi) x velocity (fpm)) required. Using Figure 1, select materials whose limiting PV’s are above the PV you have calculated for the application. Further selection can be made by noting the “k” wear factor of your material choices. The lower the “k” factor, the longer the material is expected to last.

Fig. 1 - WEAR RESISTANCE VS. LOAD BEARING CAPABILITY
Structural components are commonly designed for maximum continuous operating stresses equal to 25% of their ultimate strength at a specific temperature. This guideline compensates for the viscoelastic behavior of plastics that result in creep. Isometric stress-time curves are provided here to help you characterize a material’s strength behavior as a function of time at both room temperature (Figure 2) and at 300°F (Figure 3).

Fig. 2 - CREEP AT 73°F (23°C) - DYNAMIC MODULUS - TIME CURVES

- **DURATRON® CU60 PBI**
- **DURATRON® T4203 PAI**
- **KETRON® 1000 PEEK**
- **TECHTRON® PPS**
- **DURATRON® U1000 PEI**
- **ERTALYTE® PET-P**
- **ACETRON® POM-H**
- **QUADRANT NYLON 101 PA66**

Fig. 3 - CREEP AT 300°F (150°C) - DYNAMIC MODULUS - TIME CURVES

- **DURATRON® T4203 PAI**
- **DURATRON® CU60 PBI**
- **DURATRON® U1000 PEI**
- **KETRON® 1000 PEEK**
- **TECHTRON® PPS**

Creep values predicted by Dynamic Mechanical Analysis

STEP 2

Consider the thermal requirements of your application using both typical and extreme conditions.

A material’s heat resistance is characterized by both its heat deflection temperature (HDT) and continuous service temperature. HDT is an indication of a material’s softening temperature and is generally accepted as a maximum temperature limit for moderately to highly stressed, unconstrained components. Continuous service temperature is generally reported as the temperature above which significant, permanent physical property degradation occurs after long term exposure. This guideline is not to be confused with continuous operation or use temperature reported by regulatory agencies such as Underwriters Laboratories (UL).

The melting point of crystalline materials and glass transition temperature of amorphous materials are the short-term temperature extremes to which form stability is maintained. For most engineering plastic materials, using them at or above these temperatures should be avoided.

Fig. 4 - EXAMPLES OF THERMAL PERFORMANCE

- **NYLATRON® NSM PA6**
- **ERTALYTE® PET-P**
- **DURATRON® U1000 PEI**
- **KETRON® 1000 PEEK**
- **DURATRON® T4203 PAI**
- **FLUOROSINT® 500 PTFE**
- **DURATRON® CU60 PBI**

- Maximum Continuous Service Temperature
- Heat Deflection Temperature
STEP 3

Consider chemical exposure during use and cleaning.

Quadrant provides chemical compatibility information as a guideline in this brochure although it can be difficult to predict since concentration, temperature, time and stress each have a role in defining suitability for use. Nylon, acetal and Ertalyte® PET-P are generally suitable for industrial environments. Crystalline high performance materials such as Fluorosint® filled PTFE, Techtron® PPS and Ketron® PEEK are more suitable for aggressive chemical environments (see Figure 5). We strongly recommend that you test under end-use conditions. Specific chemical resistance can be found on the property comparison pages starting on page 38.

STEP 4

Before proceeding to steps 5-7, it may be appropriate to consider additional material characteristics including:

- **Relative Impact Resistance/Toughness**
- **Dimensional Stability**
- **Regulatory/Agency Compliance**

Materials with higher tensile elongation, Izod impact and tensile impact strengths are generally tougher and less notch sensitive for applications involving shock loading (see Table 1).

Engineering plastics can expand and contract with temperature changes 10 to 15 times more than many metals including steel. The coefficient of linear thermal expansion (CLTE) is used to estimate the expansion rate for engineering plastic materials. CLTE is reported both as a function of temperature and as an average value. Figure 6 shows how many different engineering plastics react to increased temperature.

Modulus of elasticity and **water absorption** also contribute to the dimensional stability of a material. Be sure to consider the effects of humidity and steam.

Agencies such as the Food and Drug Administration (FDA), U.S. Department of Agriculture (USDA), Underwriters Laboratory (UL), 3A-Dairy Association and American Bureau of Shipping (ABS) commonly approve or set specific guidelines for material usage within their industrial segments. Check our website for the most current agency compliance information.

<table>
<thead>
<tr>
<th>Mechanical Property Comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength</td>
</tr>
<tr>
<td>Nylatron® NSM PA6</td>
</tr>
<tr>
<td>Acetron® GP POM-C</td>
</tr>
<tr>
<td>Ertalyte® PET-P</td>
</tr>
<tr>
<td>Ertalyte® TX PET-P</td>
</tr>
<tr>
<td>Quadrant PPSU</td>
</tr>
<tr>
<td>Duratron® U1000 PEI</td>
</tr>
<tr>
<td>Duratron® U2300 PEI</td>
</tr>
<tr>
<td>Fluorosint® 500 PTFE</td>
</tr>
<tr>
<td>Techtron® PPS</td>
</tr>
<tr>
<td>Techtron® PSGF PPS</td>
</tr>
<tr>
<td>Ketron® 1000 PEEK</td>
</tr>
<tr>
<td>Ketron® GF30 PEEK</td>
</tr>
<tr>
<td>Duratron® T4203 PAI</td>
</tr>
<tr>
<td>Duratron® T4301 PAI</td>
</tr>
<tr>
<td>Duratron® T5530 PAI</td>
</tr>
<tr>
<td>Duratron® C605 PBI</td>
</tr>
</tbody>
</table>

Dynamic Modulus charts found on pages 8-10 of this brochure illustrate how engineering materials (Figure 7) and advanced engineering plastics (Figure 8) compare in stiffness as temperature increases. Dynamic modulus curves also graphically display a materials softening temperature.
STEP 5

Select the most cost-effective shape for your part.

Quadrant offers designers the broadest size and configuration availability. Be sure to investigate all of the shape possibilities—you can reduce your fabrication costs by obtaining the most economical shape. Consider Quadrant’s many processing alternatives.

Note: From process to process, many material choices remain the same. However, there are physical property differences based upon the processing technique used to make the shape. For example:

- Injection molded parts exhibit the greatest anisotropy (properties are directionally dependent).
- Extruded products exhibit slightly anisotropic behavior.
- Compression molded products are isotropic — they exhibit equal properties in all directions.

<table>
<thead>
<tr>
<th>For:</th>
<th>Choose:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long lengths</td>
<td>Extrusion</td>
</tr>
<tr>
<td>Small diameters</td>
<td></td>
</tr>
<tr>
<td>Rod, plate, tubular bar, bushing stock</td>
<td></td>
</tr>
<tr>
<td>Large stock shapes</td>
<td>Casting</td>
</tr>
<tr>
<td>Near net shapes</td>
<td></td>
</tr>
<tr>
<td>Rod, plate, tubular bar, custom cast parts</td>
<td></td>
</tr>
<tr>
<td>Various shapes in advanced engineering materials</td>
<td>Compression Molding</td>
</tr>
<tr>
<td>Rod, disc, plate, tubular bar</td>
<td>Injection Molding</td>
</tr>
<tr>
<td>Small shapes in advanced engineering materials</td>
<td></td>
</tr>
<tr>
<td>High Volumes (>10,000 Parts)</td>
<td></td>
</tr>
</tbody>
</table>

STEP 6

Determine the machinability of your material options.

Machinability can also be a material selection criterion. All of the Quadrant products in this brochure are stress relieved to enhance machinability. In general, glass and carbon reinforced grades are considerably more abrasive on tooling and are more notch sensitive during machining than unfilled grades. Reinforced grades are commonly more stable during machining.

Because of their extreme hardness, imidized materials (i.e., Duratron® PAI and Duratron® CU60 PBI) can be challenging to fabricate. Carbide and polycrystalline diamond tools should be used during machining of these materials. To aid you in assessing machinability, a relative rating for each material can be found on the property comparison charts that begin on page 38 of this brochure (line 42).

Fig.6 - COEFFICIENTS OF LINEAR THERMAL EXPANSION

STEP 7

Make sure you receive what you specify.

The properties listed in this brochure are for Quadrant Engineering Plastic Products’ materials only. Be sure you are not purchasing an inferior product. Request product certifications when you order.

Tech Notes:

All materials have inherent limitations that must be considered when designing parts. To make limitations clear, each material profiled in this guide has an Engineering Notes section dedicated to identifying these attributes.

We hope our candor about material strengths and weaknesses simplifies your selection process. For additional information, please contact Quadrant Engineering Plastic Product’s Technical Service Department at 1-800-366-0300 or online.
Dynamic Modulus

Using Dynamic Modulus Data in Material Selection

Dynamic Modulus. What is it?

Most of us are familiar with the concept of elastic behavior. When a force (stress) is applied to an elastic material the material stretches by an amount

\[\Delta = \text{original length} \times \frac{\text{force per unit area (stress)}}{\text{stiffness (modulus)}} \]

Stress and modulus are frequently denoted by the letters sigma (\(\sigma\)) and (E) respectively. The amount of stretch is usually described as strain (\(\varepsilon\)), the amount of stretch per unit length,

\[\varepsilon = \frac{\Delta}{L} \]

When a force is applied to a perfectly elastic material, it stretches a set amount until the force is removed. It then returns to its original length. No material is perfectly elastic, though some metals and ceramics come close if the strain is not too great. Plastics are viscoelastic. That means that although the equations above can be used to get a fair approximation of their response to load (provided the strain is low, generally 1% or less), the stiffness of the material will depend on how long the material is under load. A viscoelastic material will have a higher modulus, it will be stiffer, when a load is applied for a short time than when it is applied over a long time. We see this behavior as creep. A load which causes a minor deflection when applied for a few minutes causes a larger deflection when left on for several days. The modulus is temperature dependent as well. Materials generally get softer when they are heated and stiffer when they are cooled. The dynamic modulus (DM) curves shown in this publication show the elastic response (stiffness) of our materials to a short duration force at various temperatures. Creep data should be used to predict behavior when a material will be under continuous load for long times. Creep data is available from Quadrant Engineering Plastic Products’ Technical Service Department (1-800-366-0300) or visit us online at www.quadrantplastics.com.

So How Do You Use the Dynamic Modulus Curves? Here’s an Example.

Suppose your application involves a temperature of 160°F. It is a dry application. Chemical resistance and wear properties are not critical. You might be considering Nylon 66, Acetal and PET-P. Their stiffness (moduli) at room temperature are fairly similar. All of them have heat deflection temperatures (HDT) well over 160°F. Which one would be best? Heat deflection temperature tells you nothing more than how hot the material has to get before its stiffness drops to a particular value. For example, by looking at row 17 on pages 38 and 39 of this brochure you would know that Quadrant Nylon 101 PA66 at 200°F is as stiff as Acetron® GP POM-C at 220°F, which is as stiff as Ertalyte® PET-P at 240°F. At these temperatures they will all have a modulus of about 148,000 psi. What you don’t know is: do they retain their room temperature stiffness then soften suddenly at the HDT, or do they gradually soften as temperature is increased? By reviewing the DM curves (pages 9 and 10) you would observe that at 160°F the dynamic modulus of Nylon 101 is 391,000 psi, Acetron® GP POM-C is 386,000 psi and Ertalyte® PET-P is 471,000 psi. At the application temperature Ertalyte® PET-P is over 20% stiffer than either nylon or acetal. If its important to limit deflection under load at this temperature, Ertalyte® PET-P is the better choice.

Dynamic modulus data is a valuable material selection tool.
Fig. 7 - ENGINEERING PLASTICS & AMORPHOUS ADVANCED ENGINEERING PLASTICS

These Dynamic Modulus charts illustrate how materials profiled in this brochure compare in stiffness as temperature increases.
These Dynamic Modulus charts illustrate how materials profiled in this brochure compare in stiffness as temperature increases.
PRODUCT APPLICATION:

Industrial Bearings

- **Problem:** Bronze bearings are heavy, noisy and require constant lubrication.
- **Solution:** Nytron® NSM PA6 bearings can be quickly machined from the many stock sizes of tubular bar and address many of the problems associated with low-tech metal parts.
- **Benefits:** The weight reduction allowed by plastic bearings often means savings in other areas. This Nytron® NSM PA6 bearing lasts ten times longer than the unfilled cast nylon part that was supplied with the OE truck.

NYLON PRODUCTS

Nylon’s toughness, low coefficient of friction and good abrasion resistance make it an ideal replacement for a wide variety of materials from metal to rubber. It weighs only 1/7 as much as bronze. Using nylon reduces lubrication requirements, eliminates galling, corrosion and pilferage problems, and improves wear resistance and sound dampening characteristics. Nylon has a proven record of outstanding service in a multitude of parts for such diverse fields as paper, textiles, electronics, construction, mining, metalworking, aircraft, food and material handling.

Nylon is easily fabricated into precision parts using standard metalworking equipment. Its good property profile combined with a broad size range availability have made the material very popular since we first introduced nylon stock shapes in 1946. Today, a variety of extruded and cast nylon grades are available to match specific application demands.

Since nylons are frequently used for wear applications, Table 2 and Figure 10 (on page 13) are provided to assist designers with material selection.

Quadrant is an ISO 9001:2008 registered company that provides full traceability and quality control from raw material to finished product. It is typically supplied in rod, plate, tubular bar or custom shapes including near net castings.

All Quadrant standard extruded and cast nylon grades are profiled on the following pages.

Table 2: Wear Rate, Coefficient of Friction and Limiting PV Data

<table>
<thead>
<tr>
<th>Nylon</th>
<th>Wear Factor “k” (1)</th>
<th>Comparative Wear Rate to Nytron® NSM</th>
<th>Coefficient of Friction Static (2)</th>
<th>Dynamic (3)</th>
<th>Limiting PV (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nytron® NSM PA6</td>
<td>12</td>
<td>1.0</td>
<td>.17–.25</td>
<td>.17–.23</td>
<td>15,000</td>
</tr>
<tr>
<td>Nytron® GSM Blue PA6</td>
<td>65</td>
<td>5.4</td>
<td>.17–.23</td>
<td>.17–.21</td>
<td>5,500</td>
</tr>
<tr>
<td>Nytron® GSM PA6</td>
<td>90</td>
<td>7.5</td>
<td>.21–.25</td>
<td>.19–.23</td>
<td>3,000</td>
</tr>
<tr>
<td>Standard Type 6 (a)</td>
<td>100</td>
<td>8.3</td>
<td>.21–.24</td>
<td>.21–.23</td>
<td>3,000</td>
</tr>
<tr>
<td>Nylon 6/6</td>
<td>80</td>
<td>6.7</td>
<td>.16–.20</td>
<td>.27–.31</td>
<td>2,700</td>
</tr>
</tbody>
</table>

(1) Measured on ½” LD. journal at 5000 PV (118 fpm & 42.2 psi)

K = h/PVT x 10^-10

h = radial wear (in)
P = normal pressure, (psi)
V = sliding speed, (fpm)
T = test duration, (hrs)

(2) Measured on thrust washer bearing under a normal load of 50 lbs. Gradually increasing torque was applied until the bearing completed at 90° rotation in about one second.

(3) Measured on thrust washer testing machine, un lubricated @ 20 fpm & 250 psi.

(4) Limiting PV (Test value—un lubricated @ 100 fpm (lb./fin.2 min.) w/4x Safety Factor

(a) Equivalent to Quadrant’s MC® 907.

Tech Notes:

Nylons can absorb up to 7% (by weight) water under high humidity or submerged in water. This can result in dimensional changes up to 2% and a corresponding reduction of physical properties. Proper design techniques can frequently compensate for this factor.

PRODUCT APPLICATION:

Sheaves

- **Problem:** Heavy cast or stamped metal sheaves decreased performance of lifting equipment, required frequent lubrication and shortened the life of the expensive wire rope.
- **Solution:** Specially designed Nytron® GSM PA6 sheaves eliminated these problems. Nylon sheaves can be easily machined or custom cast when larger series are required.
- **Benefits:** Nytron® GSM PA6 is seven times lighter than cast iron, reduces weight on the boom and eliminates corrosion.

NYLON PRODUCTS

FIRST CHOICE FOR ALL GENERAL PURPOSE WEAR AND STRUCTURAL COMPONENTS

- Broadest size range availability
- Good mechanical and electrical properties
- Ideal balance of strength and toughness
- Many grade options: FDA compliant, Internally lubricated, Heat stabilized
- Cast as finished parts and near net shapes (nylon 6)
NYLON PRODUCTS

PRODUCT APPLICATION:
Wear pads
- Problem: Bronze or hybrid metal wear pads are very noisy, tough to lubricate, wear mating surfaces and markedly decrease the amount of control possible in a system.
- Solution: Machined pads made from Nylatron® nylon are quickly fabricated, easy to replace and improve the efficiency of equipment.
- Benefits: Lighter in weight than metal, Nylatron® NSM PA6 or Nylatron® 7030L PA6 can eliminate chatter and the loss of control associated with it. Higher load capabilities also mean a chance to reduce part size and the possibility of eliminating costly lubrication systems.

PRODUCT APPLICATION:
Gears
- Problem: Metal gears create noise, wear mating parts and require lubrication.
- Solution: Gears machined from Nylatron® nylons can solve these problems and be designed using Quadrant’s Design and Fabrication Guide.
- Benefits: Nylatron gears can reduce noise, eliminate lubrication and act as a sacrificial link in a system, thus saving destruction of other costly components.

<table>
<thead>
<tr>
<th>SMALL/SCREW MACHINE NYLON PARTS (EXTRUDED-TYPE 6/6)</th>
<th>LARGER OR NEAR NET NYLON SHAPES (CAST-TYPE 6 NYLONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For general purpose wear and structural parts (FDA grades available)</td>
<td>Quadrant Nylon 101 PA66</td>
</tr>
<tr>
<td>Of all the unmodified nylons, Nylon 101 is the strongest, most rigid and has one of the highest melting points. It is commonly specified for screw machined electrical insulators and food contact parts. It is stocked in both natural and black. Other colors are available on a custom basis. Nylon 101 natural is FDA, USDA, NSF, and 3A-Dairy compliant.</td>
<td>Nylatron® MC907 PA6</td>
</tr>
<tr>
<td>Unmodified type 6 nylon offering the highest strength and hardness of the nylon 6 grades. MC 907 natural is FDA, USDA and 3A-Dairy compliant. It is off-white in color and primarily used for food contact parts.</td>
<td></td>
</tr>
<tr>
<td>Temperature resistant grades</td>
<td>Nylatron® 4.6 PA46</td>
</tr>
<tr>
<td>Compared with conventional nylons, Nylatron® 4.6 features a better retention of stiffness and creep resistance over a wide range of temperatures as well as superior heat aging resistance. Therefore, applications for Nylatron® 4.6 are situated in the “higher temperature area” (175-300°F) where stiffness, creep resistance, heat aging resistance, fatigue strength and wear resistance of PA6 PA66, POM and PET fall short.</td>
<td>Nylatron® MC901</td>
</tr>
<tr>
<td>Heat stabilized nylon offering long-term thermal stability to 260°F. It is blue in color and used in a variety of bearing and structural applications such as wheels, gears, and custom parts.</td>
<td></td>
</tr>
<tr>
<td>For improved load bearing capability</td>
<td>Nylatron® GS PA66</td>
</tr>
<tr>
<td>Molybdenum disulphide (MoS₂) filled nylon offering improved strength and rigidity. With a lower coefficient of linear thermal expansion than Nylon 101, Nylatron® GS PA66 parts maintain better fit and clearances, and have less tendency to seize as bearings.</td>
<td>Nylatron® GSM PA6</td>
</tr>
<tr>
<td>Nylatron® GSM contains finely divided particles of molybdenum disulphide (MoS₂) to enhance its load bearing capabilities while maintaining the impact resistance inherent to nylon. It is the most commonly used grade for gears, sheaves, sprockets and custom parts. It is grey-black in color.</td>
<td></td>
</tr>
<tr>
<td>For improved load capacity in structural applications</td>
<td>Nylatron® GF30</td>
</tr>
<tr>
<td>For applications requiring higher compressive strength and rigidity, 30% glass reinforced Nylon 6/6 is also available. It is stocked in diameters ranging from 10mm to 150mm (or .394” to 5.910” in meter lengths).</td>
<td>Nylatron® LFG PA6</td>
</tr>
<tr>
<td>Nylatron® LFG takes the performance of Nylatron® LIG and adds FDA compliance for applications where food contact is possible. Food packaging and processing equipment users can now benefit from the wear resistance, toughness and low coefficient of friction of this nylon material.</td>
<td></td>
</tr>
</tbody>
</table>
Larger or Near Net Nylon Shapes (Cast - Type 6 Nylons)

| For industrial applications where a lower coefficient of friction is beneficial | Nylatron® LIG PA6
Nylatron® LIG combines the toughness of cast PA6 with an oil-based lubricant that is encapsulated within the nylon matrix. It increases the load bearing performance of the material when compared to unfilled nylons and reduces the coefficient of friction. It is an ideal material for industrial application in conveying and processing industries. |
|---|---|
| For high load applications where a lower coefficient of friction is needed | Nylatron® GSM Blue PA6
The first cast nylon to combine both molybdenum disulphide (MoS₂) and oil for the load capability of Nylatron® GSM nylon, plus improved frictional characteristics. It excels in higher pressures, and at low speeds—up to 40 fpm. It offers 20% lower coefficient of friction, 50% greater limiting PV, and a lower “k” factor than Nylatron® GSM, making it ideal for slide pads, thrust washers and trunion bearings. Nylatron® GSM Blue should be considered for any oil-filled nylon application. It is dark blue in color. |
| For best wear resistance and lowest coefficient of friction | Nylatron® NSM PA6
Still the best bearing and wear nylon product available today. Proprietary type 6 nylon formulation produced using Quadrant’s Monocast® process. Solid lubricant additives impart self-lubricating, high pressure/velocity and superior wear resistance characteristics. Nylatron® NSM was developed specifically for demanding applications where larger size parts are required. It is ideal for bearings, gears and wear pads. In wear applications, Nylatron® NSM lasts up to 10 times longer than standard Type 6 nylon. |
| The ultimate in control and load handling capability | Nylatron® 703XL PA6
This ultra-high performance bearing grade of PA6 provides wear resistance near the levels of Nylatron® NSM with superior load bearing capability and an industry first— a near zero level of “stick-slip.” This elimination of chatter provides an extraordinary amount of control for high-precision applications. |
| Outperforms competing Nylon materials in wear resistance and load bearing capabilities | Nylatron® WP PA6
Developed specifically for wear pads, Nylatron® WP outperforms its competition across a wide range of applications and in multiple industries. It offers an economical solution to provide superior performance, weight and noise reduction, corrosion resistance, and easy machining. This self-lubricating Nylon reduces maintenance and the associated downtime and cost. |

Fig. 10 - WEAR RESISTANCE VS. LOAD BEARING CAPABILITY

- **NYLON MATERIALS**
 - K Factor (Lower is Better)
 - PV (Higher is Better)

PRODUCT APPLICATION:

Diffuser Nozzle

- **Problem:** A submerged stainless steel nozzle was costly to fabricate and a weighty challenge to manipulate.
- **Solution:** This custom cast Nylatron® MC301 part replaced a multi-piece assembly and improved performance.
- **Benefits:** Chemical and moisture resistance of plastics combined with the production efficiency of custom casting drastically reduced the cost in use of this part.
SPECIALTY CAPABILITIES

TO BE A CANDIDATE FOR CUSTOM CASTING, A COMPONENT SHOULD HAVE:

- A continuous operating temperature (in use environment) between -40°F to 200°F (-40°C to 93°C)
- Continuous working stress that does not exceed 3,500 psi
- A finished part size between 4 oz. and 800 lbs. (equivalent to a 5,600 lb. steel part)
- Sufficient complexity or detail to make machining from a stock shape too costly

Custom casting offers a manufacturing alternative that bridges the plastic fabrication methods of machining from stock shapes and injection molding of thermoplastic parts. It is ideal for small and medium quantity production runs of parts too large or too costly to injection mold. Part size and production quantities most often custom cast are found in Figure 33.

Nylatron® and Monocast® (MC®) cast nylon parts produce tough, strong, resilient, and highly wear resistant parts that cost-effectively replace bronze, brass, iron, steel, and aluminum in many heavy-duty industrial applications.

Custom cast parts are made by a proprietary monomer casting process in which liquid monomer is directly polymerized into nylon polymer in the mold. Parts of virtually unlimited size and thickness, retaining internal soundness can be produced by Custom Casting. Eleven ft. tall slide bars and six feet diameter dryer gear rings that weigh 250 lbs. are just a few of the very large parts Quadrant has produced using Custom Casting. Four inch bearings, bottle handling cams, and gear blanks cast over steel cores are also cost-effectively cast to a near net size, saving machining and assembly time and material costs.

CUSTOM CASTING OPTIONS

- Custom Mill Shapes - Picture 1
 Custom sizes of rod, sheet, tubular bar.
 - Large selection of tooling already available
 - Limitless size availability
 - Lowest cost tooling of any process
 Best Choice When You Have:
 Less than 100 pieces, or intricate parts that must be machined.

- Near Net Shapes - Picture 2
 Castings of close to finish dimensions, supplied sufficiently over size for finish machining.
 - Minimal machining required
 - Can cast non-critical dimensions
 - Most efficient use of material
 Best Choice When You Have:
 100-1,000 part requirement or when multiple parts are possible from a single near net shape.

- Cast to Size - Picture 3
 Castings the part to complete or nearly finished dimensions. Parts may require no machining, or machining only on critical dimensions.
 - Minimal or no finish machining required
 - Economical on moderate run sizes
 Best Choice When You Have:
 Quantities of 1,000 or more per year, or parts that cannot be injection molded due to high tooling cost, geometry, or size.

WHERE NYLATRON® CASTING FITS

(TYPICAL PART SIZE AND QUANTITIES)

- Large (100 lbs.)
 - Custom Cast/Machined
 - Best choice for large parts of any quantity
 - Economical alternative to machining for quantities as low as 50 pieces
 - Lower production costs than machining or injection molding, and lower tooling costs than injection molding
 - Several parts can be made from one mold improving design flexibility and cost

- Medium
 - Injection Molding
 - High design and tooling cost
 - Size & shape limitations
 - Tolerance constraints
 - Unable to produce parts with undercuts, thin-thin transitions, and heavy cross-sections

- Small (1 lb.)
 - Machining
 - Limited to stock size availability
 - High production cost for 500 or more piece quantities

- RIM parts
 - Custom Cast/Machined
 - Best choice for large parts of any quantity
 - Economical alternative to machining for quantities as low as 50 pieces
 - Lower production costs than machining or injection molding, and lower tooling costs than injection molding
 - Several parts can be made from one mold improving design flexibility and cost

- Part Size
 - Medium
 - Large
 - Small
 - RIM parts

- Production Quantity
 - Low (1 piece)
 - Medium
 - High (10,000 pieces)

Picture 1 - Nylatron® MC901 PA6 Spur gears are machined from custom size tubular bar.

Picture 2 - Most details on this 16” long x 1-1/2” thick spring cap were cast to size.

Picture 3 - This 19” diameter Nylatron® GSM PA6 sheave requires only finish machining of the bore for bearing press fit.
CUSTOM CASTING APPLICATION

CAN YOU REDUCE YOUR COST TO MANUFACTURE PLASTIC PARTS USING A QUADRANT CUSTOM NYLON CASTING?

The following graphs enable you to evaluate the potential for using a Quadrant custom casting or near net shape to manufacture a given shape. Custom castings can be used to reduce the cost to manufacture certain parts by

1) Eliminating certain difficult (time consuming) machining operations
2) Reducing machining scrap and cycle time by improving the overall material yield
3) Eliminating the machining of less-critical dimensions.

USING THE GRAPHS - STEP-BY-STEP

1. Estimate the weight of the part (in lbs.) and find the appropriate graph below.
2. Estimate the machining yield: finish part weight/weight of the stock shape required to machine the parts if the part was to be machined from a stock shape (rod, plate, tubular bar).
3. Estimate the annual quantity of parts required.

The intersection of the yield and number of parts will indicate whether the part is a good custom cast part: “YES”; potentially a custom cast candidate: “maybe”; or not a good custom casting: “no.”

Contact Quadrant for help evaluating “maybe” parts or for a quotation of “YES” custom cast parts.
ACETAL PRODUCTS

PRODUCT PROFILE

FOR GENERAL PURPOSE PARTS IN WET ENVIRONMENTS

- Low moisture absorption
- High strength, stiffness
- Easy to machine
- No centerline porosity in Acetron® GP POM-C
- Many formulation options: Copolymer, Homopolymer, PTFE filled, and Internally lubricated/enhanced wear grade

ACETAL PRODUCTS

Acetal provides high strength and stiffness coupled with enhanced dimensional stability and ease of machining. As a semi-crystalline material, acetal is also characterized by a low coefficient of friction and good wear properties—especially in wet environments.

Because acetal absorbs minimal amounts of moisture, its physical properties remain constant in a variety of environments. Low moisture absorption results in excellent dimensional stability for close-tolerance machined parts. In high moisture or submerged applications, acetal bearings outperform nylon 4 to 1. Acetal is ideally suited for close tolerance mechanical parts and electrical insulators which require strength and stiffness. It also offers resistance to a wide range of chemicals including many solvents.

Quadrant offers both homopolymer and copolymer grades of acetal including enhanced bearing grade materials. Acetron® GP POM-C acetal is porosity-free and offered as our standard general purpose grade. For slightly higher mechanical properties, we offer a broad size range of the homopolymer acetal (Acetron®) products. For improved frictional properties PTFE-enhanced Acetron® AF products are available.

PRODUCT APPLICATION:

Scraper blades

- Problem: Dairy nickel and stainless blades were costly and expensive to fabricate.
- Solution: Acetron® GP POM-C porosity-free POM-C plate is machined into scraper blades used in commercial ice cream manufacture.
- Benefits: The porosity-free Acetron® GP POM-C blades are easily cleaned and do not entrap dirt or bacteria. The low stress level of Acetron® GP POM-C means parts that are machined flat, stay flat.

FDA Compliant Acetron® GP POM-C Colors

- Red
- Blue
- Green
- Yellow
- Grey
- Brown
- Orange

Available in Life Science Grades

- Mechanical Grade Colors
- With Biocompatibility Certification On Stock Shapes

Tech Notes:

In general, acetales do not perform as well in abrasive wear applications as nylon. Compensation for moisture related growth generally allows Nylatron® nylon to be used for wet, abrasive applications. If your application requires dimensional consistency in an abrasive, high humidity or submerged environment, Entalyte® PET-P will often offer improved performance (see page 16).
ACETRON® GP POM-C

Acetron® GP POM-C is Quadrant’s general purpose copolymer acetal and is the only porosity-free acetal product available today. Investments in process technology by Quadrant now provide the performance and machinability of acetal without center core porosity. Our in-line photometric quality procedure assures every plate and rod is porosity-free making it the preferred acetal for food contact and medical applications. Acetron® GP POM-C natural and black are FDA, USDA, Canada AG and 3A-Dairy compliant.

ACETRON® POM-H

Acetron®, a homopolymer acetal, is also manufactured and stocked in rod and plate. It offers slightly higher mechanical properties than Acetron® GP POM-C Acetal, but may contain a low-density center, especially in larger cross-sections. Acetron® GP POM-C Acetal also offers better chemical resistance than homopolymer acetal.

Acetron® is better suited for small diameter, thin-walled bushings that benefit from the additional strength and rigidity of homopolymer acetal.

ACETRON® AF BLEND POM-H

Acetron® AF Blend POM-H is a unique thermoplastic material for use in moving parts in which low friction and long wear life are important. It is a combination of PTFE fibers uniformly dispersed in Delrin® acetal resin. This combination offers better wear characteristics than unfilled Delrin®.

Acetron® AF Blend POM-H, supplied as a 2:1 blend of PTFE filled POM-H and virgin POM-H resins, has excellent sliding/friction properties. Bearings made of Acetron® AF POM-H can operate at higher speeds while exhibiting reduced wear. These bearings are also essentially free of slip-stick behavior because the static and dynamic coefficient of friction are closer than with most plastics.

Acetron® AF Blend POM-H retains 90% of the strength that is inherent in unmodified Acetron® acetal. Some properties are changed due to the addition of the softer PTFE fiber. The natural color of Acetron® AF POM-H is dark brown. Ertalyte® TX’s performance or call our tech hotline for more information.

DELRIN® AF 100 POM-H

Unblended Acetron® AF 100 POM-H offers a slightly higher limiting PV and lower coefficient of friction due to additional PTFE content. This added PTFE typically decreases the wear capability and impact strength. Acetron® AF 100 POM-H is available on a custom basis.

DELRIN® AF DE 588 POM-H

Teflon fill material specifically for Naval use in submarine valve seat applications.

Table 3

<table>
<thead>
<tr>
<th>Acetal</th>
<th>Wear Factor “k” (1)</th>
<th>Coefficient of Friction Static (2)</th>
<th>Dynamic (3)</th>
<th>Limiting PV (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetron® AF Blend POM-H</td>
<td>60</td>
<td>.20–.22</td>
<td>.18–.20</td>
<td>8,300</td>
</tr>
<tr>
<td>Delrin® AF 100 POM-H</td>
<td>56</td>
<td>.18–.20</td>
<td>.16–.18</td>
<td>11,980</td>
</tr>
<tr>
<td>Acetron® GP POM-C</td>
<td>200</td>
<td>.25–.26</td>
<td>.23–.25</td>
<td>2,700</td>
</tr>
<tr>
<td>Acetron® POM-H</td>
<td>200</td>
<td>.25–.26</td>
<td>.23–.25</td>
<td>2,700</td>
</tr>
<tr>
<td>Turcite® A (blue)</td>
<td>213</td>
<td>.30–.34</td>
<td>.20–.24</td>
<td>6,550</td>
</tr>
<tr>
<td>Turcite® X1 (red)</td>
<td>72</td>
<td>.28–.32</td>
<td>.20–.24</td>
<td>8,125</td>
</tr>
</tbody>
</table>

(1) Measured on 1/2” LD journal at 5000 PV (110 fpm & 42.2 psi)
K = h/PV x 10^-10 (cu.in.min./ft.lb.hr.) where h =radial wear (in)
P =normal pressure, (psi)
V =sliding speed, (fm)
T =test duration, (hrs)

(2) Measured on thrust washer bearing under a normal load of 50 lbs. Gradually increasing torque was applied until the bearing completed at 90° rotation in about one second.

(3) Measured on thrust washer testing machine, unlubricated @ 20 fpm & 250 psi.

(4) Limiting PV (Test value—unlubricated @ 100 fpm (lb/in.2 min.) w/ 4x Safety Factor

PRODUCT APPLICATION:

Rollers

- **Problem:** Metal rollers in cargo truck lifts were being damaged in use.
- **Solution:** Impact resistant Acetron® GP POM-C rollers absorb collisions with loading docks without deforming and causing the system to fail.
- **Benefits:** Lighter weight and an ability to bounce-back made tight tolerance Acetron® GP POM-C rollers a better choice than other materials.
ERTALYTE® PET-P

PRODUCT PROFILE

STABILITY OF ACETAL

- Good for both wet and dry environments
- High strength and rigidity—ideal for close tolerance parts
- Excellent stain resistance
- Good wear resistance and excellent dimensional stability
- Better resistance to acids than nylon or acetal

ERTALYTE® PRODUCTS

ERTALYTE® PET-P

Ertalyte® is an unreinforced, semi-crystalline thermoplastic polyester based on polyethylene terephthalate (PET-P). It is manufactured from proprietary resin grades. Only Quadrant can offer Ertalyte®. It is characterized as having the best dimensional stability coupled with excellent wear resistance, a low coefficient of friction, high strength, and resistance to moderately acidic solutions. Ertalyte®'s properties make it especially suitable for the manufacture of precision mechanical parts which are capable of sustaining high loads and enduring wear conditions. Ertalyte®'s continuous service temperature is 210°F (100°C) and its melting point is almost 150°F higher than acetals. It retains significantly more of its original strength up to 180°F (85°C) than nylon or acetal (see Figure 9).

In addition, Ertalyte® PET-P offers good chemical and abrasion resistance. Its low moisture absorption enables mechanical and electrical properties to remain virtually unaffected by moisture (see Figure 11). Ertalyte® PET-P can be machined to precise detail on standard metal working equipment.

Ertalyte® is FDA compliant in natural and black. Natural Ertalyte® is also USDA, 3A-Dairy and Canada AG compliant. Ertalyte® is an excellent candidate for parts used in the food processing and equipment industries.

PRODUCT APPLICATION:
Piston and valves

- Problem: Various materials were being used in a food filling line.
- Solution: Standardizing on Ertalyte® PET-P helped the manufacturer broaden the reach of their product by offering greater accuracy and higher performance.
- Benefits: Ertalyte® is very dimensionally stable and extremely resistant to moisture. These properties, combined with good chemical resistance gave the manufacturer a system-wide solution.

PRODUCT APPLICATION:
Manifold

- Problem: A manufacturer was using aluminum for precision work and acetal with expensive inserts for less demanding applications.
- Solution: Ertalyte® met design criteria all of the manufacturer's products.
- Benefits: The new design was able to maintain the tight tolerances needed and offer improved stain and chemical resistance.

Tech Notes:

Because it is more rigid and offers greater thermal performance than nylon and acetal, Ertalyte® machines differently. For best results, please request a copy of Quadrant’s design and fabrication guideline for Ertalyte® PET-P. Ertalyte® and other polyesters have less resistance to hot water than Acetron® GP POM-C acetal.
ERTALYTE® TX PET-P

Ertalyte® TX PET-P is an internally lubricated thermoplastic polyester providing enhanced wear and inertness over general purpose nylon (PA) and acetal (POM) products. Containing uniformly dispersed solid lubricant, Ertalyte® TX PET-P provides a lower wear rate and coefficient of friction than unmodified polyesters like PET or PBT and even internally lubricated materials like Acetron® AF POM-H.

Ertalyte® TX PET-P excels under both high pressure and velocity conditions. It is also ideally suited for applications involving soft metal and plastic mating surfaces.

PRODUCT APPLICATION:

Processing equipment bearing

- **Problem:** A food manufacturer was tired of costly wear of stainless steel parts.
- **Solution:** Ertalyte® TX PET-P bearings replaced stainless parts that caused contamination and required frequent maintenance.
- **Benefits:** FDA compliant Ertalyte® TX PET-P wears well against other plastics and metals. Its solid lubricant reduces noise and lasts longer than unfilled materials.

PRODUCT APPLICATION:

Distribution valves

- **Problem:** High process unit temperatures warped portioning unit components. Additional cooling equipment was required to package hot products.
- **Solution:** Quadrant offered Ertalyte® TX PET-P for moderate temperature packaging and Ketron® 1000 PEEK for high temperature use.
- **Benefits:** Ertalyte® TX PET-Ps dimensional stability and wear resistance drastically improved part life. More costly Ketron® 1000 PEEK was also used in specialty units where much higher temperatures were required. The manufacturer was able to...
Quadrant PC 1000 (polycarbonate) machine grade polycarbonate is a transparent amorphous thermoplastic which offers very high impact strength and high modulus of elasticity. The material has a 290°F (145°C) heat deflection temperature at 264 psi, absorbs very little moisture and resists acidic solutions. These properties, in addition to good electrical characteristics, make Quadrant PC 1000 machine grade polycarbonate stock shapes an excellent choice for electrical/electronic applications (see Figures 14 and 15). Its strength, impact resistance and transparency also make it an ideal material for transparent structural applications such as sight glasses and windows.

Quadrant PC 1000 machine grade polycarbonate is stress relieved making it ideal for close tolerance machined parts. Our stock shapes are produced from polycarbonate resins which meet the requirements of ASTM D 3935.

A glass fiber reinforced polycarbonate grade is available upon request.

PRODUCT APPLICATION:
Laser housing

- **Problem:** A housing on laser test equipment was performing, but too costly.
- **Solution:** The same housing, machined from Quadrant PC 1000 performed in the application and met cost targets.
- **Benefits:** Good dielectric and UV resistance were required - Quadrant PC 1000 provided the needed strength and impact resistance.

PRODUCT APPLICATION:
Manifolds

- **Problem:** Many industries using acrylic parts need transparent manifolds and sight glasses that can withstand higher temperatures and impact.
- **Solution:** Quadrant PC 1000 is easily machined into these parts and meets the higher performance needs.
- **Benefits:** Quadrant PC 1000 has far higher temperature resistance than acrylic and offers greater impact resistance.

Available in Life Science Grades
- With Biocompatibility Certification On Stock Shapes

Fig. 14 - TENSILE STRENGTH VS. TEMPERATURE

Fig. 15 - DISSIPATION FACTOR

Tech Notes:
Quadrant PC 1000 polycarbonate is machine grade, not optically clear. It can be both mechanically and vapor polished to improve optical clarity. Caution: During machining, never use coolants with an aromatic base.
QUADRANT PSU

PRODUCT PROFILE

HOT WATER & STEAM PERFORMANCE TO 300°F (150°C)
- Broad temperature range capability
- Good thermal and electrical insulation characteristics
- Hydrolysis resistant
- Radiation stability
- Low ionic impurity

Quadrant PSU (polysulfone) is an amber semi-transparent, heat-resistant, high performance engineering thermoplastic. It offers excellent mechanical, electrical and improved chemical resistance properties relative to polycarbonate. Polysulfone's properties remain relatively consistent over a broad temperature range, from −150°F (−100°C) to 300°F (150°C).

Quadrant PSU is hydrolysis resistant for continuous use in hot water and steam at temperatures up to 300°F. Its flame resistance is UL 94-V-0 at 1/4" thickness (6.35mm) and UL 94-V-2 at 1/8" thickness (3.175mm).

Quadrant PSU offers high chemical resistance to acidic and salt solutions, and good resistance to detergents, hot water and steam. In addition, polysulfone has excellent radiation stability and offers low ionic impurity levels. Quadrant PSU often replaces polycarbonate when higher temperatures, improved chemical resistance or autoclavability is required (see Figure 17). It is commonly used for analytical instrumentation, medical devices and semiconductor process equipment components.

Custom colors can be made to order. Quadrant’s PSU is FDA, USDA, 3A-Dairy compliant and NSF compliant under standards 51 and 61.

PRODUCT APPLICATION:

Medical carrier
- Problem: Cleaning aluminum parts was tedious and costly.
- Solution: Parts fabricated from Quadrant PSU easily replaced ineffective aluminum.
- Benefits: The Quadrant PSU parts were able to be steam cleaned and more easily dealt with lab chemicals and radiation.

PRODUCT APPLICATION:

Dialysis equipment components
- Problem: Smaller, lighter equipment is being requested from medical device designers.
- Solution: Quadrant PSU easily replaced the stainless steel parts used on early designs.
- Benefits: Quadrant PSU is nearly 7 times lighter than stainless steel. - The plastic material easily withstands repeated autoclave cycles.

Fig. 16 - FLEXURAL MODULUS VS. TEMPERATURE

![Graph showing flexural modulus vs. temperature](image)

Available in Life Science Grades
- With Biocompatibility Certification On Stock Shapes

Tech Notes:
Polymer is not a wear material and may stress craze under high pressures in certain chemical environments. Contact Quadrant’s Technical Support Team for help at 800-366-0300 or www.quadrantplastics.com.
PRODUCT APPLICATION:

Orthotic Trials
- **Problem:** Sizing trials for orthotic implants require sterilization which damages most materials, while disposables are too costly.
- **Solution:** Lightweight Quadrant PPSU is tough and handles repeated autoclaving cycles due to its resistance to steam.
- **Benefits:** Life Science Grade colored
Quadrant PPSU allows surgeons to properly size replacement joints without worry of fading or cracking.

Medical Wands
- **Problem:** Fatigue caused by heavy steel tools reduced efficiency of medical personnel.
- **Solution:** Instrument handles machined from Quadrant PPSU improved performance of surgical teams.
- **Benefits:** Lighter weight, greater impact resistance and improved autoclavability made Quadrant PPSU the material of choice in structural medical applications.

Endoscopic probe positioning ferrule
- **Problem:** The coated stainless steel wore the mating parts and required constant maintenance.
- **Solution:** Intricately machined Quadrant PPSU ferrules eliminated the wear while offering other benefits.
- **Benefits:** Low moisture absorption and good dimensional stability were critical. In addition were the benefits of easy cleaning and improved impact resistance.

PRODUCT PROFILE

BEST IMPACT & STEAM RESISTANCE TO 400°F (205°C)
- Orthopedic Trial Instruments
- Highly resistant to steam autoclaving
- Impact resistant
- High modulus of elasticity and heat resistance

Quadrant PPSU (polyphenylsulfone) is an amorphous high performance thermoplastic offering better impact resistance and chemical resistance than polysulfone and polyetherimide (Duratron® PEI).

Quadrant PPSU offers superior hydrolysis resistance when compared to other amorphous thermoplastics as measured by steam autoclaving cycles to failure. In fact, Quadrant PPSU has virtually unlimited steam sterilizability (see Table 4). This factor makes it an excellent choice for medical devices as steam autoclaves are widely used to sterilize medical devices. It also resists common acids and bases—including commercial washing solutions—over a broad temperature range.

Quadrant PPSU is available from stock in natural (bone white) and made to order in transparent and custom colors. It is commonly used in sterilization trays, dental and surgical instrument handles, and in fluid handling coupling and fitting applications. Quadrant PPSU is tested for ISO 10993 and USP Class VI compliance.

It is suitable for use in electronic assembly equipment and devices that must withstand solder temperatures. Quadrant PPSU has a heat deflection temperature of 405°F (207°C). Quadrant PPSU is FDA compliant and NSF compliant under standards 51 and 61.

Table 4

<table>
<thead>
<tr>
<th>Material</th>
<th>Flexural Stress (psi)</th>
<th>Cycles to Crazing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadrant PPSU</td>
<td>1400</td>
<td>>2000</td>
</tr>
<tr>
<td>Duratron U1000 PEI</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>Quadrant PSU</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Available in Life Science Grades
- Medical Grade Colors
- With Biocompatibility Certification On Stock Shapes

Tech Notes:
Quadrant PPSU has been approved for use in a variety of medical devices, it is FDA compliant and is appropriate for food contact applications. Quadrant PPSU is not a wear material, and its properties degrade when exposed to sunlight.
PRODUCT PROFILE

HIGH STRENGTH & HEAT RESISTANCE, PLUS EXCELLENT DIELECTRIC PROPERTIES
- High strength and performs in continuous use to 340°F (170°C)
- High dielectric strength
- UL 94-V-0 rated with low smoke
- Available in glass-reinforced grades

Duratron® PEI

Duratron® U1000 PEI (polyetherimide) is an amorphous polymer offering high strength and excellent flame and heat resistance. It performs continuously to 340°F (170°C), making it ideal for high strength/high heat applications, and those requiring consistent dielectric properties over a wide frequency range. It is hydrolysis resistant, highly resistant to acidic solutions and capable of withstanding repeated autoclaving cycles.

Duratron® U2100, U2200 and U2300 PEI are glass-reinforced versions (10, 20, and 30%, respectively) of Duratron® U1000 PEI which provide even greater rigidity and improved dimensional stability while maintaining many of the useful characteristics of basic Duratron® PEI. Duratron® U1000 PEI is FDA and USP Class VI compliant. FDA compliant colors of Duratron® PEI are also available on a custom basis.

Duratron® PEI commonly is machined into parts for reusable medical devices, analytical instrumentation, electrical/electronic insulators (including many semiconductor process components) and a variety of structural components requiring high strength and rigidity at elevated temperatures. Quadrant offers a broad range of Duratron® U1000 PEI and Duratron® U2300 PEI shapes from stock.

Available in Life Science Grades
- Medical Grade Colors
- With Biocompatibility Certification On Stock Shapes

PRODUCT APPLICATION:

Sighting Arm
- **Problem:** Orthopedic surgeons needed a more durable device that didn’t require exposure to x-rays.
- **Solution:** Duratron® U1000 PEI allows the doctor to realign the fracture, lock the beam and drill holes for the required titanium screws.
- **Benefits:** Duratron® U1000 PEI has greater impact resistance than polysulfone and doesn’t require the surgeon to be exposed to x-rays as the original steel part forced.

Tech Notes:
Since Duratron® PEI is an amorphous material, selection of appropriate non-aromatic coolants during machining is important. Care must also be used in selecting adhesives and designing press fit components to avoid stress cracking. Contact Quadrant’s Technical Support Team for help at 800-366-0300 or www.quadrantplastics.com. Duratron® PEI is not designed for use in bearing and wear applications.
PRODUCT APPLICATION:
Labyrinth and shroud seals
- Problem: Seals made from aluminum, bronze or Babbitt caused mating part wear that decreased the efficiency of turbo compressors.
- Solution: Redesigned abradable seals machined from Fluorosint® 500 PTFE tubular bar dramatically improved efficiency and helped protect other parts from damage.
- Benefits: Fluorosint’s excellent chemical resistance and forgiving composition can greatly improve the performance of rotating equipment while dealing with shaft movement and pressure changes that can damage metallic seals.

PRODUCT APPLICATION:
Floating seals
- Problem: A manufacturer that wanted to improve performance in a rotary airlock needed a material with the performance of PTFE and the dimensional stability of a more rigid thermoplastic.
- Solution: Replacing the graphite-filled PTFE parts with Fluorosint® 500 PTFE seals allowed performance gains across the -200°F (-130°C) to 450°F (230°C) operating range.
- Benefits: With longer part life, better dimensional stability and virtually no wear to mating parts, Fluorosint® 500 PTFE reduced maintenance and motor load.

PRODUCT PROFILE

MOST DIMENSIONALLY STABLE PTFE-BASED PRODUCT
- Chemical resistance parallels PTFE
- Continuous use temperatures to 500°F (260°C)
- Better wear resistance than PTFE
 - higher load carrying capability
 - 1/9 of the deformation under load
 - lower coefficient of thermal expansion

FLUOROSINT® PRODUCTS

Fluorosint’s unique properties are the result of a proprietary process in which synthetically manufactured mica is chemically linked to PTFE. This bonding results in properties not normally attainable in reinforced PTFE. Fluorosint grades offer an excellent combination of low frictional properties and dimensional stability.

FLUOROSINT® HPV PTFE
FDA compliant Fluorosint® HPV is a high performance bearing grade of Fluorosint - optimized for high PV and very low “K” or wear factor. Fluorosint® HPV was developed for bearing applications where other, low-tech PTFE formulations exhibit premature wear or simply cannot perform. FDA compliance gives food and pharmaceutical equipment manufacturers new design options and all benefit from its excellent load bearing and wear characteristics.

FLUOROSINT® 135 PTFE
Fluorosint® 135 is a PTFE material designed to provide the lowest coefficient of friction and deformation for seals, bearings, and washer applications. Designed to improve the performance of compressor piston rings, rider bands, and packaging sets, Quadrant Fluorosint® 135’s extremely competitive pricing allows companies to guard against expensive equipment failure and ensure maximum production, longevity, and profitability.

FLUOROSINT® MT01 PTFE
Fluorosint® MT-01 is an extreme grade developed specifically for applications where the benefits of PTFE-based materials also require strength, stiffness and stability. Fluorosint® MT-01 delivers high mechanical performance at elevated temperatures and as a result is often specified in seat, seal and gasket applications where extreme conditions are present.

FLUOROSINT® 500 PTFE
Fluorosint® 500 PTFE has nine times greater resistance to deformation under load than unfilled PTFE (see Figure 21). Its coefficient of linear thermal expansion approaches the expansion rate of aluminum, and is 1/5 that of PTFE—often eliminating fit and clearance problems (see Figure 22). It is 1/3 harder than PTFE, has better wear characteristics and maintains low frictional properties. Fluorosint® 500 PTFE is also non-abrasive to most mating materials. Ideal for replacement of aluminum seals creating reduced clearance and improved efficiency.

FLUOROSINT® 207 PTFE
Fluorosint® 207 PTFE’s unmatched dimensional stability, excellent creep resistance and white color uniquely position this material to serve FDA regulated applications. It is non-permeable in steam and complies with the FDA’s regulation 21 CFR 175.300. Its relative wear rate is 1/20 the rate of PTFE below 300°F (150°C) making it an excellent choice for aggressive service bearings and bushings.

Tech Notes:
Due to its PTFE matrix, Fluorosint’s physical strength characteristics are not as high as other advanced engineering plastics profiled in this guide (i.e., Ketron® 1000 PEEK, Duratron® PAI).
PRODUCT APPLICATION:

Valve seats and seals

- **Problem:** PTFE seals can easily deform or change shape after machining and installation.
- **Solution:** Seats and seals machined from Fluorosint® 207 and HPV PTFE can maintain the required dimensions and provide the sealing performance needed in challenging services like steam and hot air.
- **Benefits:** Fluorosint’s dimensional stability is significantly better than that of virgin or low-tech filled PTFE’s. It also offers excellent chemical resistance and non-permeability to hot air and steam.

PRODUCT APPLICATION:

Shrouds

- **Problem:** Efficiency loss due to clearance between metal impeller and metal shroud. During upset conditions impeller touches shroud, unit crashes causing severe damage.
- **Solution:** Fluorosint® 500 shrouds are designed to combat clearance problems, reduce downtime, and provide protection.
- **Benefits:** Fluorosint® 500 shrouds create tighter clearances at onset, improving efficiency with less air leakage. Prevents catastrophic failure by sacrificing FL-500 part only.
PRODUCT PROFILE

EXCEL IN CORROSIVE ENVIRONMENTS TO 425°F (220°C)

- Excellent chemical resistance
- Essentially zero moisture absorption
- Machines to tight tolerances
- Excellent alternative to PEEK at lower temperatures

TECHTRON® PPS

PPS (polyphenylene sulfide) products offer the broadest resistance to chemicals of any advanced engineering plastic. They have no known solvents below 392°F (200°C) and offer inertness to steam, strong bases, fuels and acids. Minimal moisture absorption (see Figure 25) and a very low coefficient of linear thermal expansion, combined with Quadrant's proprietary stress relieving processes, make these PPS products ideally suited for precise tolerance machined components. In addition, PPS products exhibit excellent electrical characteristics and are inherently flame retardant.

TECHTRON® HPV PPS

Techtron® HPV PPS exhibits excellent wear resistance and a low coefficient of friction. It overcomes the disadvantages of virgin PPS caused by a high coefficient of friction, and of glass fibre reinforced PPS which can cause premature wear of the counterface in moving-part applications.

- Excellent wear and frictional behavior
- Excellent chemical and hydrolysis resistance
- Very good dimensional stability
- Good electrical insulating and dielectric properties
- Inherent low flammability
- Excellent resistance against high energy radiation

Fig. 23 - TEMPERATURE RESISTANCE

K FACTOR / WEAR RESISTANCE (lower is better)

<table>
<thead>
<tr>
<th>Material</th>
<th>250°F</th>
<th>240°F</th>
<th>320°F</th>
<th>383°F</th>
<th>250°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Techtron® PPS</td>
<td>52</td>
<td>62</td>
<td>72</td>
<td>100</td>
<td>> 2400</td>
</tr>
<tr>
<td>Techtron® HPV PPS</td>
<td>375</td>
<td>375</td>
<td>375</td>
<td>375</td>
<td>375</td>
</tr>
<tr>
<td>Ketron® PEEK</td>
<td>375</td>
<td>375</td>
<td>375</td>
<td>375</td>
<td>375</td>
</tr>
<tr>
<td>Ketron® HPV PEEK</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Acetron® GP POM-C</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

Tech Notes:

All Quadrant EPP’s PPS products offer dimensional stability and strength at moderate temperatures. They are rated for continuous service to 425°F (220°C), but strength and stiffness vary based on temperature and grade. Unreinforced Techtron® PPS is generally not recommended for wear applications. Products like Techtron® HPV, Duratron® PAI or Ketron® PEEK are better selections for wear applications.

When designing with Quadrant’s compression molded grades, it is important to note its relatively low elongation and impact strength.
TECHTRON® PSGF PPS
This product is the most recognized PPS. It is a compression molded analogue to Ryton R4 resin. It offers better dimensional stability and thermal performance than Techtron® PPS and maintains its strength to above 425°F (220°C).

TECHTRON® PSBG PPS
This bearing-grade is internally lubricated and carbon fiber reinforced compression molded PPS offering a low coefficient of thermal expansion and uncompromised chemical resistance. It is well suited for and wear applications or when an electrically conductive material is required.

PRODUCT APPLICATION:
Cmp retaining rings
- **Problem:** Manufacturers of semiconductors needed a material that could maintain critical dimensions and withstand a broad array of aggressive chemicals in an application where developed wafers were being polished.
- **Solution:** Techtron® PPS replaced coated metals, acetal, polyester and range of other materials that could deliver the package of benefits that Techtron offers.
- **Benefits:** Excellent chemical resistance, superior dimensional stability and ease of machining has made Techtron® PPS the premier material for CmP consumables.

PRODUCT APPLICATION:
Processing equipment bearing
- **Problem:** A manufacturer of food processing equipment needed a material that could withstand aggressive wash down cycles and perform without lubrication.
- **Solution:** Techtron® HPV was used as a bearing in this new unit that offered a more compact, less complicated design that was capable of higher speed and greater output.
- **Benefits:** In the past only exotic materials would have worked in this elevated temperature application where lubrication wasn’t possible and chemicals were present during cleaning. Techtron® HPV PPS combines the chemical resistance of PPS with the wear resistance and performance of premium bearing materials.

Fig. 24 - CHEMICAL RESISTANCE

<table>
<thead>
<tr>
<th>USEFUL pH RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Techtron® PPS</td>
</tr>
<tr>
<td>Ketron® PPS</td>
</tr>
<tr>
<td>Ketron® HPV PEEK</td>
</tr>
<tr>
<td>Acetron® GP POM-C</td>
</tr>
</tbody>
</table>

1 3 5 7 9 11

Fig. 25 - DIMENSIONAL STABILITY

<table>
<thead>
<tr>
<th>Dimensional Stability (CLTE and H₂O Absorption 24 hr. Immersion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8 x 10⁻³</td>
</tr>
<tr>
<td>0.01%</td>
</tr>
</tbody>
</table>
PRODUCT PROFILE

CHEMICALLY RESISTANT STRUCTURAL AND BEARING & WEAR MATERIAL FOR CONTINUOUS USE TO 480°F (250°C)

- Excellent chemical resistance
- Very low moisture absorption
- Inherently good wear and abrasion resistance
- Unaffected by continuous exposure to hot water or steam

KETRON® PEEK

Ketron® PEEK grades offer chemical and hydrolysis resistance similar to PPS, but can operate at higher temperatures. PEEK 1000 offers steam and wear resistance, while carbon-reinforced PEEK provides excellent wear capabilities. Our latest grade, PEEK HPV, offers outstanding bearing performance. PEEK can be used continuously to 480°F (250°C) and in hot water or steam without permanent loss in physical properties. For hostile environments, PEEK is a high strength alternative to fluoropolymers. PEEK carries a V-O flammability rating and exhibits very low smoke and toxic gas emission when exposed to flame.

KETRON® 1000 PEEK

This general purpose grade is unreinforced and offers the highest elongation and toughness of all PEEK grades. The newly available black PEEK 1000 is ideal for instrument components where aesthetics are important, as well as for seal components where ductility and inertness are important. Ketron® 1000 PEEK is FDA compliant.

KETRON® GF30 PEEK (30% GLASS-REINFORCED)

The addition of glass fibers significantly reduces the expansion rate and increases the flexural modulus of PEEK. This grade is ideal for structural applications that require improved strength, stiffness or stability, especially at temperatures above 300°F (150°C).

Tech Notes:

The stiffness of all PEEK grades drops off significantly and expansion rate increases above its glass transition temperature (Tg) of 300°F (150°C). A material like Duratron® PAI would be better suited for close tolerance bearings or seals operating at temperatures higher than 300°F (150°C).
KETRON® CA30 PEEK (30% CARBON FIBER-REINFORCED)

The addition of carbon fibers enhances the compressive strength and stiffness of PEEK, and dramatically lowers its expansion rate. It offers designers optimum wear resistance and load carrying capability in a PEEK-based product. This grade provides more thermal conductivity than unreinforced PEEK—increasing heat dissipation from bearing surfaces improving bearing life and capability.

KETRON® HPV PEEK (BEARING GRADE)

Carbon fiber reinforced with graphite and PTFE lubricants, our newest grade of PEEK offers the lowest coefficient of friction and the best machinability for all PEEK grades. An excellent combination of low friction, low wear, high LPV, low mating part wear and easy machining, make it ideal for aggressive service bearings.

Ketron® PEEK is Available in Life Science Grades:

This series of PEEK materials were developed specifically for Life Sciences applications and are pre-qualified biocompatible materials, helping to save precious time and money. Approved for both the United States Pharmacopeias (USP) and ISO 10993-1 by successfully passing a series of biocompatibility tests these products are implantable for up to 24 hours with Ketron® PEEK CLASSIX up to 30 days.

- Ketron® PEEK LSG
- Ketron® PEEK CA30 LSG
- Ketron® PEEK GF30 LSG
- Ketron® PEEK Classix® LSG

Ketron® CM GF30, CM CA30, and CM HPV PEEK are available in larger cross-sections via compression molding (CM) process.

PRODUCT APPLICATION:

Structural parts

- **Problem:** Although inexpensive, nylon and acetal semiconductor wafer handling tools were failing due to exposure to aggressive chemicals and high temperatures.
- **Solution:** Ketron® 1000 PEEK could easily withstand the temperature and chemical exposure and allowed the manufacturer to standardize their product line.
- **Benefits:** The good chemical resistance of PEEK, particularly at elevated temperatures was well suited for this application where limited wear takes place.

Table 5

<table>
<thead>
<tr>
<th>Ketron® PEEK offers an excellent combination of physical properties</th>
<th>Ketron® 1000 PEEK</th>
<th>Ketron® HPV PEEK</th>
<th>Techtron® T4203 PAI</th>
<th>Duratron® CM 1000</th>
<th>Duratron® CM 1400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Chem. Resist.</td>
<td>Very Good</td>
<td>Very Good</td>
<td>Excellent</td>
<td>Fair</td>
<td>Fair</td>
</tr>
<tr>
<td>Moisture Absorption</td>
<td>Very Good</td>
<td>Very Good</td>
<td>Excellent</td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td>Steam Resistance</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Wear Resistance (dry)</td>
<td>Very Good</td>
<td>Very Good</td>
<td>Poor</td>
<td>Excellent</td>
<td>Good</td>
</tr>
<tr>
<td>Cont. Service Temperature</td>
<td>480°F (250°C)</td>
<td>482°F (250°C)</td>
<td>425°F (220°C)</td>
<td>430°F (221°C)</td>
<td>500°F (260°C)</td>
</tr>
<tr>
<td>Heat Deflection Temperature</td>
<td>320°F (160°C)</td>
<td>333°F (195°C)</td>
<td>250°F (120°C)</td>
<td>240°F (115°C)</td>
<td>532°F (280°C)</td>
</tr>
<tr>
<td>% Flexural Strength Maintained at: 300°F (150°C)</td>
<td>84%</td>
<td>86%</td>
<td>23%</td>
<td>25%</td>
<td>70%</td>
</tr>
<tr>
<td>at: 500°F (260°C)</td>
<td>10%</td>
<td>23%</td>
<td>5%</td>
<td>25%</td>
<td>70%</td>
</tr>
</tbody>
</table>

Ketron® CM GF30, CM CA30, and CM HPV PEEK are available in larger cross-sections via compression molding (CM) process.
PRODUCT PROFILE

STIFFNESS & STRENGTH AT TEMPERATURE EXTREMES

- Maintains strength and stiffness to 500°F (260°C)
- Minimal expansion rate to 500°F (260°C)
- Excellent wear resistance in bearing grades
- Able to endure harsh thermal, chemical and stress conditions

DURATRON® PAI

With its versatile performance capabilities and proven use in a broad range of applications, Duratron® PAI polyamide-imide (PAI) shapes are offered in extruded and compression molded grades.

Duratron® PAI is the highest performing, melt processable plastic. It has superior resistance to elevated temperatures. It is capable of performing under severe stress conditions at continuous temperatures to 500°F (260°C). Parts machined from Duratron® PAI stock shapes provide greater compressive strength and higher impact resistance than most advanced engineering plastics (see Figure 27).

Duratron® PAI’s extremely low coefficient of linear thermal expansion and high creep resistance deliver excellent dimensional stability over its entire service range (see Figure 28). Duratron® PAI is an amorphous material with a Tg (glass transition temperature) of 537°F (280°C). Duratron® PAI stock shapes are post-cured using procedures developed jointly by Solvay Advanced Polymers and Quadrant. This eliminates the need for additional curing by the end user in most situations. A post-curing cycle is sometimes recommended for components fabricated from extruded shapes where optimization of chemical resistance and/or wear performance is required.

For large shapes or custom geometries like tubular bar, compression molded Duratron® PAI shapes offer designers the greatest economy and flexibility. Another benefit of selecting a compression molded grade is that resins are cured, or “imidized” prior to molding which eliminates the need to post-cure shapes or parts fabricated from compression molded shapes.

Popular extrusion and injection molding grades of Duratron® PAI are offered as compression molded shapes. Typically, you can identify a compression molded grade as having a second digit of “5” in the product name.

Fig. 27 - COMPRRESSIVE STRENGTH COMPARISON

Unfilled Grades

Tech Notes:

As Duratron® PAI has a relatively high moisture absorption rate (see Figure 29), parts used in high temperature service or made to tight tolerances should be kept dry prior to installation. Thermal shock resulting in deformation can occur if moisture laden parts are rapidly exposed to temperatures above 400°F (205°C). Consult Quadrant’s Design and Fabrication guide, website or technical service department for post-curing assistance.
Extruded Grades

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duratron® T4203 PAI</td>
<td>For electrical or high strength applications. Polyamide-imide offers excellent compressive strength and the highest elongation of the Duratron® grades. It also provides electrical insulation and exceptional impact strength. This grade is commonly used for electrical connectors and insulators due to its high dielectric strength. Its ability to carry high loads over a broad temperature range makes it ideal for structural components such as linkages and seal rings. Duratron® T4203 PAI is also an excellent choice for wear applications involving impact loading and abrasive wear.</td>
</tr>
<tr>
<td>Duratron® T4301 PAI</td>
<td>For general purpose wear and friction parts. This grade is primarily used for wear and friction parts. It offers a very low expansion rate, low coefficient of friction and exhibits little or no slip-stick in use. Duratron® T4301’s flexural modulus of 1,060,000 psi, is higher than most other advanced engineering plastics. This grade excels in severe service wear applications such as non-lubricated bearings, seals, bearing cages and reciprocating compressor parts.</td>
</tr>
<tr>
<td>Duratron® T4501 PAI</td>
<td>For best wear resistance and lowest coefficient of friction. This seal and bearing grade offers a very low coefficient of friction and good wear properties. It was developed specifically for use in rotating equipment. Its composition is the same as the former Duratron® T4340 PAI and used when larger shapes or when the greatest degree of dimensional control is required.</td>
</tr>
<tr>
<td>Duratron® T5030 PAI</td>
<td>Glass reinforced for improved load capacity. Polyamide-imide offers high rigidity, retention of stiffness, a low expansion rate and improved load carrying capabilities. This grade is well suited for applications in the electrical/electronic, business equipment, aircraft and aerospace industries.</td>
</tr>
<tr>
<td>Duratron® T7130 PAI</td>
<td>Carbon reinforced for non-abrasive wear performance. Polyamide-imide offers exceptional stiffness, non-abrasive wear performance and the lowest coefficient of thermal expansion of all the materials profiled in this guide.</td>
</tr>
</tbody>
</table>

Compression Molded Grades

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duratron® T4503 PAI</td>
<td>This grade is commonly used for dies and patterns of formed metal parts or as thermal insulators and isolators. It is similar in composition to Duratron® T4203 PAI, and selected when larger shapes are required.</td>
</tr>
<tr>
<td>Duratron® T4501 PAI</td>
<td>This grade is well suited for general purpose wear and friction parts. It has a higher compressive strength and can therefore carry more load than Duratron® T4540 PAI. It is similar in composition to Duratron® T4301 PAI, and selected when larger shapes are required.</td>
</tr>
<tr>
<td>Duratron® T4540 PAI</td>
<td>This seal and bearing grade offers a very low coefficient of friction and good wear properties. It was developed specifically for use in rotating equipment. Its composition is the same as the former Duratron® T4340 PAI and used when larger shapes or when the greatest degree of dimensional control is required.</td>
</tr>
<tr>
<td>Duratron® T5530 PAI</td>
<td>Duratron® T5530 is 30% glass-reinforced. It is ideal for higher load structural or electronic applications. This grade is similar in composition to Duratron® T5030 PAI. It is selected for larger shapes or when the greatest degree of dimensional control is required.</td>
</tr>
<tr>
<td>Duratron® T7130 PAI</td>
<td>Duratron® T7130 PAI is 30% carbon fiber-reinforced. It offers exceptional stiffness, non-abrasive wear performance and the lowest coefficient of thermal expansion of all the materials profiled in this guide.</td>
</tr>
</tbody>
</table>

PRODUCT APPLICATION: Labyrinth seals

- **Problem:** Metallic seals needed large operating tolerances to account for pressure changes and potential contact hard impact with a compressor shaft.
- **Solution:** Impact resistant Duratron® PAI seals could withstand impact during pressure upsets and tighten up running clearances that increase efficiency.
- **Benefits:** Dimensionally stable Duratron® PAI seals withstand tough chemical service and wear evenly, protecting the expensive metal shaft and mating parts.

PRODUCT APPLICATION: Bearing cages

- **Problem:** A metallic ball bearing assembly had reached its maximum capability. Designers needed a lighter, higher performance system.
- **Solution:** A Duratron® T4301 PAI assembly replaced a steel cage that held hardened steel balls and a bronze bushing.
- **Benefits:** Frequently engineering plastics are used to eliminate or revise a system. In this case, the light weight of Duratron® PAI coupled with its lubrication-free performance met the needs of this manufacturer’s new design.
PRODUCT PROFILE

THERMAL RESISTANCE OVER 600°F
- Good performance at elevated temperature (>800°F)
- Good chemical resistance
- Easily machined from a broad range of shapes - rod, sheet, tubular forms
- High strength, tough and dimensionally stable

DURATRON® D7000 PI

Duratron® D7000 PI is an exceptional value for applications where thermal requirements exclude Duratron® PAI (see Figure 30) and do not require the extraordinary thermal resistance of Duratron® PBI. Duratron® PI is available in several grades for structural and wear applications and in the broadest range of shapes - particularly thick sheets, larger sheets geometries and heavy-wall tubes. It offers good mechanical performance for applications that demand higher temperature resistance.

Duratron® D7000 PI machinable shapes are ideal starting points for designs that reduce weight, extend length of service before maintenance or replacement and reduce overall cost by increasing process uptime. Duratron® PI materials are just one of the solutions in the machinable plastics industry’s broadest product line.

DURATRON® D7015G PI

Duratron® D7015G PI is a bearing grade PI that provides the good temperature resistance of polyimide with far better wear resistance, while offering a low coefficient of friction. Duratron® D7015G PI maintains its performance ability with or without lubrication. It is a great choice for bearing, bushing and seal applications where higher loads or speeds are a factor.

PRODUCT APPLICATION:

Hot runner nozzle in thermal insulator
- **Problem:** Nozzles fabricated from lower grade plastics were failing due to a high load and temperature environment.
- **Solution:** Duratron® D7000 PI was chosen as a replacement, allowing the manufacturer to increase uptime and spend less on replacement parts.
- **Benefits:** Duratron® D7000 PI with its excellent thermal resistance and dimensional stability, extended wear-life.

PRODUCT APPLICATION:

Thermal standoff - glass manufacturing
- **Problem:** Handling surfaces in a flat panel display manufacturing facility required frequent, costly replacement and often left marks on the product surface causing QC rejections.
- **Solution:** Duratron® D7000 PI easily replaced the carbon impregnated blocks and fingers throughout the manufacturing area. Parts were more easily machined than the OE materials and were locally available.
- **Benefits:** Product defects were greatly reduced as the more compliant Duratron® D7000 PI didn’t damage new panels. Replacement due to chipping was virtually eliminated and sourcing of parts was moved to a local supplier.

Fig. 30 - HEAT DEFLECTION TEMPERATURE - 264 PSI (ASTM D648)
DURATRON® PBI

PRODUCT PROFILE

BEST MECHANICAL PROPERTIES TO 800°F (425°C)
- Highest mechanical properties of any plastic above 400°F (204°C)
- Highest heat deflection temperature 800°F (427°C), with a continuous service capability of 750°F (399°C) in inert environments, or 650°F (333°C) in air with short term exposure potential to 1,000°F (538°C)
- Lowest coefficient of thermal expansion and highest compressive strength of all unfilled plastics

DURATRON® PBI

DURATRON® CU60 PBI
Duratron® CU60 PBI is the highest performance engineering thermoplastic available today. It offers the highest heat resistance and mechanical property retention over 400°F of any unfilled plastic (see Figures 31 & 32). It has better wear resistance and load carrying capabilities at extreme temperatures than any other reinforced or unreinforced engineering plastic.

As an unreinforced material, Duratron® CU60 PBI is very “clean” in terms of ionic impurity and it does not outgas (except water). These characteristics make this material very attractive to semiconductor manufacturers for vacuum chamber applications. Duratron® CU60 PBI has excellent ultrasonic transparency which makes it an ideal choice for parts such as probe tip lenses in ultrasonic measuring equipment.

Duratron® CU60 PBI is also an excellent thermal insulator. Other plastics in melt do not stick to PBI. These characteristics make it ideal for contact seals and insulator bushings in plastic production and molding equipment.

Tech Notes:
Duratron® PBI is extremely hard and can be challenging to fabricate. Polycrystalline diamond tools are recommended when fabricating production quantities. Duratron® PBI tends to be notch sensitive. All corners should be radiused (0.040” min.) and edges chamfered to maximize part toughness. High tolerance fabricated components should be stored in sealed containers (usually polybags with desiccant) to avoid dimensional changes due to moisture absorption. Components rapidly exposed to temperatures above 400°F (205°C) should be “dried” prior to use or kept dry to avoid deformation from thermal shock.

PRODUCT APPLICATION:
Vacuum Cups
- Problem: Engineers were looking for a more cost-effective solution for an extremely high temperature glass handling application.
- Solution: Duratron® CU60 PBI outperformed prior materials and reduced the component cost.
- Benefits: Duratron® CU60 PBI is more wear resistant than polyimides. - The Duratron® CU60 PBI cups reduced product breakage compared to the ceramics tested. - Duratron® CU60 PBI was more cost effective than pressed carbon or polyimide materials.

PRODUCT APPLICATION:
High heat insulator bushings
- Problem: Hot runner systems needed a material that could endure the high temperatures but did not “stick” to the finish molded parts.
- Solution: Duratron® CU60 PBI machined bushings outperformed all other materials tested in the application.
- Benefits: Duratron® CU60 PBI is unique in its ease of clean up in hot runner systems. Molded parts do not stick to Duratron® CU60 PBI during their “freeze” cycle in the mold.
The Semitron® ESD family of static dissipative products was designed by Quadrant for use where electrical discharge in operation is a problem. They are commonly used for sensitive electronic components including: integrated circuits, hard disk drives and circuit boards. Semitron products are also an excellent choice for material handling applications, and components in high speed electronic printing and reproducing equipment.

Semitron® ESD products are inherently dissipative and electrically stable unlike many other “dissipative” plastic shapes (see Table 7). They do not rely on atmospheric phenomena to activate, nor are surface treatments used to achieve dissipation. Static electricity is dissipated through these products as readily as it is dissipated along the surface. All of these products dissipate 5 KV in less than 2 seconds per Mil-B-81705C.

SEMITRON® ESD 225 POMC STATIC DISSIPATIVE ACETAL

Semitron® ESD 225 POM-C is ideal for fixturing used in the manufacturing of hard disk drives or for handling in-process silicon wafers. It is tan in color.

- **Surface resistivity:** \(10^9 – 10^{10} \Omega \text{ / sq.}\)
- **Thermal performance to 225°F (107°C)**
- **Good wear resistance**

SEMITRON® ESD 410C STATIC DISSIPATIVE PEI

Semitron® ESD 410C PEI is ideal for handling integrated circuits through the test handler environment. It is black in color and opaque.

- **Surface resistivity:** \(10^3 – 10^6 \Omega \text{ / sq.}\)
- **Thermal performance to 410°F (210°C)**
- **Low stress for tight tolerance machining**
- **High strength and stiffness**

SEMITRON® ESD 420 PEI STATIC DISSIPATIVE PEI

Semitron® ESD 420 PEI is the only, truly dissipative plastic product for use in high temperature applications.

- **Surface resistivity:** \(10^6 – 10^9 \Omega \text{ / sq.}.\) and **thermal performance**

SEMITRON® ESD 420V PEI STATIC DISSIPATIVE PEI

Semitron® ESD 420V PEI offers dissipative performance of \(10^6\) to \(10^9\) ohms/square over its full temperature performance range. It is a stiff, high strength material that is not subject to dimensional change as a result of exposure to moisture. Semitron® ESD 420V PEI is a cost effective alternative for applications that do not require the thermal performance of ultra-high performance materials.

SEMITRON® ESD 480 & 490HR PEEK STATIC DISSIPATIVE PEEK

This PEEK based static dissipative material provides a dissipative range of \(10^9\) to \(10^{12}\) ohms/square. Semitron® ESD 480 PEEK is very dimensionally stable, making it ideal for critical test fixture applications. Its exceptional chemical resistance makes it well suited for use in wafer handling and other structural applications in wet process tools where static dissipation is important. Like all Quadrant Semitron® ESD materials, Semitron® ESD 480 PEEK is not subject to dielectric breakdown. (See tech note on the prior page) Semitron® ESD 490HR PEEK available for ESD performance at \(10^{10}\)–\(10^{12}\).

Table 6

<table>
<thead>
<tr>
<th>Conductive Materials</th>
<th>10^2</th>
<th>10^6</th>
<th>10^9</th>
<th>10^{12}</th>
<th>Insulative Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tech Notes:

It is important to know how applied voltage affects the resistance of a material. Some materials exhibit high resistance at low voltages, but when subjected to harsher conditions, they can fail. This is due to dielectric breakdown and is irreversible. Figure 33 illustrates the effect of sequential applications of 100 through 1,000 volts, then a return to 100 volts to determine the hysteresis. Since static electricity can be several thousand volts, consistent performance across the voltage range must be considered.

Some materials are very inconsistent and vary on the “grain” of machining. One pair of lines illustrate the typical variation from side to side (A to B) of the same sample. This example demonstrates the need for consistent behavior in service.
SEMITRON® ESd 520HR PAI STATIC DISSIPATIVE PAI

Semitron® ESd 520HR PAI has an industry first combination of electrostatic dissipation (ESd), high strength and heat resistance. This new ESd material is ideal for making nests, sockets and fixtures for test equipment and other device handling components. The key features of 520HR are its unique ability to resist dielectric breakdown at high voltages (>100V). The graph below demonstrates the electrical performance of plastic materials commonly used in automated test handlers. Typical carbon fiber enhanced products become irreversibly more conductive when exposed to even moderate voltage. Only Semitron® ESd 520HR PAI maintains its performance throughout the voltage range, while offering the mechanical performance needed to excel in demanding applications.

- Surface resistivity: \(10^{10} \text{ – } 10^{12} \, \Omega / \text{sq.}\)

SEMITRON® ESD 500HR STATIC DISSIPATIVE PTFE

Reinforced with a proprietary synthetic mica, Semitron® ESd 500HR offers an excellent combination of low frictional properties and dimensional stability. Semitron® ESd 500HR should be considered wherever Teflon® PTFE is used. It is ideal for applications where controlled bleed off of static charges is critical. It is white in color.

- Surface resistivity: \(10^{10} \text{ – } 10^{12} \, \Omega / \text{sq.}\)
- Thermal performance to 500°F (260°C)
- Broad chemical resistance

SEMITRON® MDS 100

Semitron® MDS 100 has a remarkable combination of strength, stiffness and stability. It was developed to be used in uncontrolled application environments or where a high level of precision is required. It is an ideal choice for semiconductor test sockets, nests and fixtures in test and package equipment.

- Moisture absorption of 0.10% at 24 hrs. (per ASTM D570)
- Thermal performance to 410°F (210°C)
- Flexural modulus > 1,400,000 psi

SEMITRON® MP 370

Semitron® MP 370 offers more choices in the design and manufacturing of precision test sockets for the semiconductor manufacturing industry. While maintaining the same excellent moisture absorption and high thermal resistance of PEEK, Semitron® MP 370 provides greater strength and dimensional stability. This custom formulation allows finer and cleaner detail due to its excellent machinability.

- Very low moisture absorption
- Exceptional machinability - very small holes and tight hole patterns are possible
- Strength and stiffness that exceed unfilled PEEK materials
- Low internal stresses and no “soft center” problems associated with injection molded blanks

Table 7 - **STATIC DISSIPATION**

<table>
<thead>
<tr>
<th>Material Description</th>
<th>Surface Resistivity, ohms/sq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semitron® ESd 225 POM-C</td>
<td>(10^{9} \text{ – } 10^{10})</td>
</tr>
<tr>
<td>Semitron® ESd 410C PEI</td>
<td>(10^{10} \text{ – } 10^{11})</td>
</tr>
<tr>
<td>Semitron® ESd 420 PEI</td>
<td>(10^{10} \text{ – } 10^{11})</td>
</tr>
<tr>
<td>Semitron® ESd 420V PEI</td>
<td>(10^{9} \text{ – } 10^{10})</td>
</tr>
<tr>
<td>Semitron® ESd 480 PEEK</td>
<td>(10^{10} \text{ – } 10^{12})</td>
</tr>
<tr>
<td>Semitron® ESd 490HR PEEK</td>
<td>(10^{9} \text{ – } 10^{10})</td>
</tr>
<tr>
<td>Semitron® ESd 500HR PTFE</td>
<td>(10^{9} \text{ – } 10^{12})</td>
</tr>
<tr>
<td>Semitron® ESd 520HR PAI</td>
<td>(10^{9} \text{ – } 10^{12})</td>
</tr>
</tbody>
</table>

Fig. 33 - SURFACE RESISTIVITY

- **VESPEL® SP-21 (B)**
- **KETRON CA30 PEEK**
- **SEMITRON® ESd 410C**
- **SEMITRON® ESd 520HR**
- **SEMITRON® ESd 490HR PEEK**
- **SEMITRON® ESd 500HR PTFE**
- **SEMITRON® ESd 520HR PAI**
PRODUCT SIZE RANGE CAPABILITY

AVAILABILITY

<table>
<thead>
<tr>
<th>Product</th>
<th>Rod*</th>
<th>Plate</th>
<th>Tubular Bar</th>
<th>Disc</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadrant Nylon 101 PA66</td>
<td>.062"-6"</td>
<td>.031"-3"</td>
<td>QUI</td>
<td>–</td>
<td>Bushing Stock</td>
</tr>
<tr>
<td>Nylatron® GS PA66</td>
<td>.062"-2"</td>
<td>.031"-2"</td>
<td>QUI</td>
<td>–</td>
<td>Bushing Stock</td>
</tr>
<tr>
<td>Acetron® GP POM-C</td>
<td>.062"-12"</td>
<td>.031"-6"</td>
<td>1.97"-13.5"</td>
<td>–</td>
<td>Bushing Stock</td>
</tr>
<tr>
<td>Semilron® ESd 225 POM-C</td>
<td>.187"-8"</td>
<td>.25"-4"</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Acetron® POM-H</td>
<td>.25"-8"</td>
<td>.25"-4"</td>
<td>QUI</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Acetron® AF Blend POM-H</td>
<td>.25"-6"</td>
<td>.25"-3"</td>
<td>QUI</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ertalyte® PET-P</td>
<td>.375"-7.08"</td>
<td>.078"-4"</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ertalyte® TX PET-P</td>
<td>.394"-7.88"</td>
<td>.315"-3.94"</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Quadrant PC 1000</td>
<td>.062"-6"</td>
<td>.25"-3.0"</td>
<td>QUI</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Quadrant PSU</td>
<td>.25"-6"</td>
<td>.25"-3.0"</td>
<td>QUI</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Duratron® U1000 PEI</td>
<td>.125"-8"</td>
<td>.25"-4.0"</td>
<td>QUI</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Duratron® U2300 PEI</td>
<td>.5"-6"</td>
<td>.375"-3.0"</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Quadrant® PSU</td>
<td>.25"-8"</td>
<td>.25"-3"</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Techtron® PPS</td>
<td>.25"-5"</td>
<td>.25"-2"</td>
<td>QUI</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Techtron® HPV PPS</td>
<td>.236"-3.94"</td>
<td>.196"-3.15"</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ketron® 1000 PEEK</td>
<td>.125"-6.0"</td>
<td>.250"-4.0"</td>
<td>1.97"-10"</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ketron® GF30 PEEK</td>
<td>.236"-4"</td>
<td>.197"-2.36"</td>
<td>QUI</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ketron® HPV PEEK</td>
<td>.236"-3.94"</td>
<td>.197"-2.36"</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Duratron® T4203 PAI</td>
<td>.062"-5"</td>
<td>.25"-1.00"</td>
<td>1.25"-4"</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Duratron® T4303 PAI</td>
<td>.25"-3"</td>
<td>.25"-1.00"</td>
<td>1.25"-3"</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Duratron® T5030 PAI</td>
<td>.375"-1.5"</td>
<td>.187"-375"</td>
<td>QUI</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Duratron® T7130 PAI</td>
<td>.375"-1.5"</td>
<td>.187"-375"</td>
<td>QUI</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ketron® CA30 PEEK</td>
<td>.236"-3.15"</td>
<td>.197"-2.36"</td>
<td>QUI</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Symalit® ECTFE</td>
<td>-</td>
<td>.125"-1"</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Symalit® PVDF</td>
<td>-</td>
<td>.125"-1"</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Nylatron® 4.6 PA46</td>
<td>.630"-2.36"</td>
<td>.393"-1.96"</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Nylatron® 703 XL PA6</td>
<td>-</td>
<td>.375"-4"</td>
<td>–</td>
<td>–</td>
<td>Custom Castings</td>
</tr>
<tr>
<td>Nylatron® GSM PA6</td>
<td>2"-38"</td>
<td>.187"-6"</td>
<td>2"-80"</td>
<td>12"-80" dia.</td>
<td>Gear Rings & Custom Castings</td>
</tr>
<tr>
<td>Nylatron® GSM Blue PA6</td>
<td>2"-38"</td>
<td>.187"-6"</td>
<td>2"-80"</td>
<td>12"-80" dia.</td>
<td>Gear Rings & Custom Castings</td>
</tr>
<tr>
<td>Nylatron® LIG PA6</td>
<td>2"-38"</td>
<td>.187"-6"</td>
<td>2"-80"</td>
<td>12"-80" dia.</td>
<td>Gear Rings & Custom Castings</td>
</tr>
<tr>
<td>Nylatron® LFG PA6</td>
<td>2"-38"</td>
<td>.187"-6"</td>
<td>2"-80"</td>
<td>12"-80" dia.</td>
<td>Gear Rings & Custom Castings</td>
</tr>
<tr>
<td>Nylatron® NSM PA6</td>
<td>2"-38"</td>
<td>.187"-4"</td>
<td>2"-80"</td>
<td>12"-80" dia.</td>
<td>Gear Rings & Custom Castings</td>
</tr>
<tr>
<td>Nylatron® MC901 PA6</td>
<td>2"-38"</td>
<td>.187"-6"</td>
<td>2"-80"</td>
<td>12"-80" dia.</td>
<td>Gear Rings & Custom Castings</td>
</tr>
<tr>
<td>Nylatron® MC907 PA6</td>
<td>2"-38"</td>
<td>.187"-6"</td>
<td>2"-80"</td>
<td>12"-80" dia.</td>
<td>Gear Rings & Custom Castings</td>
</tr>
</tbody>
</table>

Key: QUI = Quote Upon Inquiry
F = 14" Wide x 28" Long
A = 24" Wide x 48" Long
B = 12" Wide x 48" Long
C = 12" Wide x 12" Long
D = 48" Wide x 120" Long
E = 12" Wide x 24" Long
G = 24" Wide x 144" Long
H = 24" Wide x 39" Long
I = 4" Wide x 48" Long
J = 1m Length
K = 3m Length
(Capabilities subject to change)
<table>
<thead>
<tr>
<th>Product</th>
<th>Rod*</th>
<th>Plate</th>
<th>Tubular Bar**</th>
<th>Disc*</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semitron® MDS 100</td>
<td>-</td>
<td>.039"-.393"(J,K)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Semitron® MP 370</td>
<td>-</td>
<td>.250"-.2.0"(A,C,E)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Semitron® ESD 410C PEI</td>
<td>.375"-3"</td>
<td>.375"-2"(C,E)</td>
<td>-</td>
<td>6.25"-10.125" dia.</td>
<td>-</td>
</tr>
<tr>
<td>Semitron® ESD 420 PEI</td>
<td>-</td>
<td>.375"-2"(C, E)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Semitron® ESD 420V PEI</td>
<td>-</td>
<td>.375"-1.25"(C)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Semitron® ESD 480 PEEK</td>
<td>-</td>
<td>.375"-1.25"(C,E)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Semitron® ESD 500H PTFE</td>
<td>-</td>
<td>.25"-2"(C)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Semitron® ESD 520HR PAI</td>
<td>-</td>
<td>.375"-1.5"(C,E,F)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fluorosint® 500/207 PTFE</td>
<td>.5"-8.75"</td>
<td>.25"-3"(C,E)</td>
<td>1.25"-54" OD,.5"-44.5" ID</td>
<td>3.75"-12" dia.</td>
<td>-</td>
</tr>
<tr>
<td>Fluorosint® MT01 PTFE</td>
<td>1"-4.5"</td>
<td>-</td>
<td>1.5"-15" OD,.75"-12.75" ID</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Techtron® PSGF PPS</td>
<td>1.0"-6"</td>
<td>.375"-2"(C,E,F)</td>
<td>1.5"-10.5" OD,.75"-7.125" ID</td>
<td>3.5"-9" dia.</td>
<td>-</td>
</tr>
<tr>
<td>Techtron® PSBG PPS</td>
<td>1.0"-5"</td>
<td>.375"-1.75"(C,E,F)</td>
<td>1.5"-12.5" OD,.75"-10.5" ID</td>
<td>3.5"-11.375" dia.</td>
<td>-</td>
</tr>
<tr>
<td>Ketron® CM CA30 PEEK</td>
<td>1.0"-3.75"</td>
<td>-</td>
<td>1.625"-36" OD,.75"-11" ID</td>
<td>3.5"-10.125" dia.</td>
<td>-</td>
</tr>
<tr>
<td>Ketron® CM GF30 PEEK</td>
<td>1.0"-1.625"</td>
<td>-</td>
<td>1.625"-12.5" OD,.75"-11" ID</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ketron® HPV PEEK</td>
<td>1.0"-2"</td>
<td>-</td>
<td>1.75"-36" OD,.75"-29.5" ID</td>
<td>3.5"-9.0" dia.</td>
<td>-</td>
</tr>
<tr>
<td>Duratron® T4503 PAI</td>
<td>2.25"-10"</td>
<td>-</td>
<td>1.625"-36" OD,.75"-29.5" ID</td>
<td>4"-12" dia.</td>
<td>-</td>
</tr>
<tr>
<td>Duratron® T4501 PAI</td>
<td>2.25"-10"</td>
<td>.375"-1.5"(C,E,F)</td>
<td>1.625"-36" OD,.75"-29.5" ID</td>
<td>3.5"-15" dia.</td>
<td>-</td>
</tr>
<tr>
<td>Duratron® T4540 PAI</td>
<td>2.25"-10"</td>
<td>.375"-1.5"(C,E,F)</td>
<td>1.5"-36" OD,.75"-29.5" ID</td>
<td>3.5"-15" dia.</td>
<td>-</td>
</tr>
<tr>
<td>Duratron® T5530 PAI</td>
<td>1.625"-10"</td>
<td>.375"-2"(C,E,F)</td>
<td>1.625"-36" OD,.75"-29.5" ID</td>
<td>3.5"-15" dia.</td>
<td>-</td>
</tr>
<tr>
<td>Duratron® T7530 PAI</td>
<td>3"-6"</td>
<td>-</td>
<td>1.625"-36" OD,.75"-29.5" ID</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Duratron® D7000 PI</td>
<td>4"-10"</td>
<td>.375"-2.5"(C)</td>
<td>4"-7" OD,.2"-5" ID</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Duratron® D7015G PI</td>
<td>4"-7"</td>
<td>1"-2.5"(C)</td>
<td>4"-7" OD,.2"-5" ID</td>
<td>3.5"-8.0" dia.</td>
<td>-</td>
</tr>
<tr>
<td>Duratron® CU60 PBI</td>
<td>.375"-3.75"</td>
<td>.5"-1.5"(C,E)</td>
<td>1.625"-10.75" OD,.75"-7.0" ID</td>
<td>3.5"-8.0" dia.</td>
<td>-</td>
</tr>
</tbody>
</table>

* Length limited by size and material
** Length limited by size, wall thickness and material

(Our capabilities are always growing, so give us a call to see if your configuration is possible.)

Key: QUI = Quote Upon Inquiry F = 14" Wide x 28" Long
A = 24" Wide x 48" Long G = 24" Wide x 39" Long
B = 12" Wide x 48" Long H = 24" Wide x 144" Long
C = 12" Wide x 12" Long I = 4" Wide x 48" Long
D = 48" Wide x 120" Long J = 9.84" Wide x 9.84" Long
E = 12" Wide x 24" Long K = 19.69" Wide x 19.69" Long
PRODUCT COMPARISON

Product Description

<table>
<thead>
<tr>
<th>Property</th>
<th>Units</th>
<th>Test Method ASTM</th>
<th>Quadrant Nylon®</th>
<th>Nylatron® GS</th>
<th>Nylatron® GF30</th>
<th>Nylatron® MC907</th>
<th>Nylatron® MC901</th>
<th>Nylatron® GSM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Extruded</td>
<td>Extruded</td>
<td>Extruded</td>
<td>Cast</td>
<td>Cast</td>
<td>Cast</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unfilled PA66</td>
<td>MoS₂ Filled PA66</td>
<td>30% Glass Filled PA66</td>
<td>Unfilled PA66</td>
<td>Blue, Heat Stabilized PA66</td>
<td>MoS₂ Filled PA66</td>
</tr>
<tr>
<td>Specific Gravity, 73°F.</td>
<td></td>
<td>D792</td>
<td>1.15</td>
<td>1.16</td>
<td>1.29</td>
<td>1.15</td>
<td>1.15</td>
<td>1.16</td>
</tr>
<tr>
<td>Tensile Strength, 73°F.</td>
<td>psi</td>
<td>D638</td>
<td>12,000</td>
<td>12,500</td>
<td>13,500</td>
<td>12,000</td>
<td>12,000</td>
<td>11,000</td>
</tr>
<tr>
<td>Tensile Modulus of Elasticity, 73°F.</td>
<td>psi</td>
<td>D638</td>
<td>425,000</td>
<td>480,000</td>
<td>675,000</td>
<td>400,000</td>
<td>400,000</td>
<td>400,000</td>
</tr>
<tr>
<td>Tensile Elongation (at break), 73°F.</td>
<td>%</td>
<td>D638</td>
<td>50</td>
<td>25</td>
<td>5</td>
<td>20</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Flexural Strength, 73°F.</td>
<td>psi</td>
<td>D790</td>
<td>15,000</td>
<td>17,000</td>
<td>21,000</td>
<td>16,000</td>
<td>16,000</td>
<td>16,000</td>
</tr>
<tr>
<td>Flexural Modulus of Elasticity, 73°F.</td>
<td>psi</td>
<td>D790</td>
<td>450,000</td>
<td>460,000</td>
<td>650,000</td>
<td>500,000</td>
<td>500,000</td>
<td>500,000</td>
</tr>
<tr>
<td>Shear Strength, 73°F.</td>
<td>psi</td>
<td>D732</td>
<td>10,000</td>
<td>10,500</td>
<td>10,000</td>
<td>11,000</td>
<td>11,000</td>
<td>10,500</td>
</tr>
<tr>
<td>Compressive Strength, 10% Deformation, 73°F.</td>
<td>psi</td>
<td>D695</td>
<td>12,500</td>
<td>16,000</td>
<td>18,000</td>
<td>15,000</td>
<td>15,000</td>
<td>14,000</td>
</tr>
<tr>
<td>Compressive Modulus of Elasticity, 73°F.</td>
<td>psi</td>
<td>D695</td>
<td>420,000</td>
<td>420,000</td>
<td>600,000</td>
<td>400,000</td>
<td>400,000</td>
<td>400,000</td>
</tr>
<tr>
<td>Hardness, Rockwell, Scale as noted, 73°F.</td>
<td></td>
<td>D785 M85 (R115)</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Hardness, Durometer, Shore “D” Scale, 73°F.</td>
<td></td>
<td>D2240</td>
<td>D80</td>
<td>D85</td>
<td>-</td>
<td>D85</td>
<td>D85</td>
<td>D85</td>
</tr>
<tr>
<td>Izod Impact (notched), 73°F, ft./in. of notch</td>
<td>ft.in./in. of notch</td>
<td>D256 Type “A”</td>
<td>0.6</td>
<td>0.5</td>
<td>-</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Coefficient of Friction (Dry vs. Steel) Dynamic</td>
<td>QTM 55007</td>
<td>0.25</td>
<td>0.2</td>
<td>-</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Limiting PV (with 4:1 safety factor applied)</td>
<td>ft. lbs./in.² min</td>
<td>QTM 55007</td>
<td>2.700</td>
<td>3,000</td>
<td>-</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
</tr>
<tr>
<td>Wear Factor “k” x 10⁻¹⁰</td>
<td>in⁻²/min/ft. lbs. hr.</td>
<td>QTM 55010</td>
<td>80</td>
<td>90</td>
<td>-</td>
<td>100</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Coefficient of Linear Thermal Expansion (40°F to 300°F)</td>
<td>in./in./°F</td>
<td>E-831 (TMA)</td>
<td>5.5 x 10⁻⁵</td>
<td>4 x 10⁻⁵</td>
<td>2.0 x 10⁻⁵</td>
<td>5.0 x 10⁻⁵</td>
<td>5.0 x 10⁻⁵</td>
<td>5.0 x 10⁻⁵</td>
</tr>
<tr>
<td>Heat Deflection Temperature 264 psi</td>
<td>°F</td>
<td>D648</td>
<td>200</td>
<td>200</td>
<td>400</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Tg-Glass transition (amorphous)</td>
<td>°F</td>
<td>D3418</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Melting Point (crystalline) peak</td>
<td>°F</td>
<td>D3418</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>420</td>
<td>420</td>
<td>420</td>
</tr>
<tr>
<td>Continuous Service Temperature in Air (Max.) (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>BTU/hr.ft.°F</td>
<td>E1530-11</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>-</td>
<td>2.37</td>
<td>-</td>
</tr>
<tr>
<td>Dielectric Strength, Short Term</td>
<td>Volts/ml</td>
<td>D149</td>
<td>400</td>
<td>350</td>
<td>350</td>
<td>500</td>
<td>500</td>
<td>400</td>
</tr>
<tr>
<td>Surface Resistivity</td>
<td>ohms/square</td>
<td>ANSI/ESD STM 11.1</td>
<td>>10¹⁰</td>
<td>>10¹⁰</td>
<td>>10¹⁰</td>
<td>>10¹⁰</td>
<td>>10¹⁰</td>
<td>>10¹⁰</td>
</tr>
<tr>
<td>Dielectric Constant, 10¹ Hz</td>
<td>-</td>
<td>D150</td>
<td>3.6</td>
<td>-</td>
<td>-</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>Dissipation Factor, 10¹ Hz</td>
<td>-</td>
<td>D150</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flammability @ 3.1 mm (1/8 in.) (5)</td>
<td>UL 94</td>
<td>V-2</td>
<td>V-2</td>
<td>V-2</td>
<td>HB</td>
<td>HB</td>
<td>HB</td>
<td>HB</td>
</tr>
<tr>
<td>Water Absorption Immersion, 24 Hours</td>
<td>% by wt.</td>
<td>D570 (2)</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Water Absorption Immersion, Saturation</td>
<td>% by wt.</td>
<td>D570 (2)</td>
<td>7</td>
<td>7</td>
<td>5.5</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Acids, Weak, acetic, dilute hydrochloric or sulfuric acid</td>
<td>-</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Acids, Strong, conc. hydrochloric or sulfuric acid</td>
<td>-</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Alkalis, Weak, dilute ammonia or sodium hydroxide</td>
<td>-</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Alkalis, Strong, strong ammonia or sodium hydroxide</td>
<td>-</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Hydrocarbons-Aromatic, benzene, toluene</td>
<td>-</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Hydrocarbons-Aliphatic, gasoline, hexane, grease</td>
<td>-</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Ketones, Esters, acetone, methyl ethyl ketone</td>
<td>-</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Ethers, diethyl ether, tetrahydrofuran</td>
<td>-</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Chlorinated Solvents, methylene chloride, chloroform</td>
<td>-</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Alcohols, methanol, ethanol, anti-freeze</td>
<td>-</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Continuous Sunlight</td>
<td>-</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>FDA Compliance</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Relative Cost (4)</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>Relative Machinability (1-10, 1=Easier to Machine)</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes
- D2240: Quadrant Nylon® test results are provided in this table.
- D638: Test methods for Quadrant Nylon® are not specified.
- D790: Results for flexural properties are given.
- D732: Shear strength values are reported.
- D695: Compressive strength is detailed.

Additional Information
- Coefficient of Linear Thermal Expansion: Values range from 10⁻⁵ to 10⁻⁴, indicating the material’s temperature sensitivity.
- Heat Deflection Temperature: Key for high-temperature applications.
- Surface Resistivity: Indicates the material’s electrical resistance in specified conditions.
- Continued Service Temperature in Air: Reflects temperature limits for continuous use.

Contact Information
- www.quadrantplastics.com • 800-366-0300
Nylatron® LIG / LFG

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Oil Filled Nylatron</th>
<th>Lubricant Filled Nylatron</th>
<th>Premium, Solid Extruded Nylatron</th>
<th>Static Dissipative POM-H</th>
<th>Semi-crystalline PET</th>
<th>Premium, Solid Lubricated PET-P</th>
<th>Unfilled POM-D</th>
<th>Unfilled POM-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nylatron® LIG</td>
<td>MoS₂ and MoS₂ Oil Filled</td>
<td>Premium, Solid Lubricated</td>
<td>Premium, Solid Lubricated</td>
<td>PTFE Filled POM-H</td>
<td>Ertalyte® PET-P</td>
<td>Ertalyte® TX</td>
<td>QTM PVDF</td>
<td>QTM ECTFE</td>
</tr>
<tr>
<td>LIG / LFG</td>
<td>Oil Filled POM-C</td>
<td>Lubricant Filled POM-C</td>
<td>Lubricant Filled POM-C</td>
<td>Unfilled POM-H</td>
<td>Static Dissipative POM-H</td>
<td>Semi-crystalline PET</td>
<td>Premium, Solid Lubricated PET-P</td>
<td>Unfilled POM-D</td>
</tr>
<tr>
<td>Cast</td>
<td>Cast</td>
<td>Cast</td>
<td>Cast</td>
<td>Cast</td>
<td>Cast</td>
<td>Cast</td>
<td>Cast</td>
<td>Cast</td>
</tr>
<tr>
<td>Cast</td>
<td>Cast</td>
<td>Cast</td>
<td>Extruded</td>
<td>Extruded</td>
<td>Extruded</td>
<td>Extruded</td>
<td>Extruded</td>
<td>Extruded</td>
</tr>
<tr>
<td>Cast</td>
<td>Cast</td>
<td>Cast</td>
<td>Extruded</td>
<td>Extruded</td>
<td>Extruded</td>
<td>Extruded</td>
<td>Extruded</td>
<td>Extruded</td>
</tr>
</tbody>
</table>

Key:
- A = Acceptable Service
- L = Limited Service
- U = Unacceptable
- QTM = Quadrant Test Method

Note:
- Properties shown are typical average values. A dash (-) indicates insufficient data available for publishing.
Product Description

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Techtron® Unfilled PPS</th>
<th>Techtron® Premium, Solid Lubricant Filled PPS</th>
<th>Techtron® Bearing Grade PPS</th>
<th>Techtron® 40% Glass Filled PPS</th>
<th>Techtron® Mica Filled PTFE</th>
<th>Fluorosint® MT01</th>
<th>Fluorosint® PTFE</th>
<th>Fluorosint® 207</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Extruded</td>
<td>Extruded</td>
<td>Compression Molded</td>
<td>Compression Molded</td>
<td>Compression Molded</td>
<td>Compression Molded</td>
<td>Compression Molded</td>
<td>Compression Molded</td>
</tr>
<tr>
<td>1 Specific Gravity, 73°F</td>
<td>-</td>
<td>D792</td>
<td>1.35</td>
<td>1.43</td>
<td>1.52</td>
<td>1.7</td>
<td>2.06</td>
<td>2.27</td>
<td>2.40</td>
</tr>
<tr>
<td>2 Tensile Strength, 73°F</td>
<td>psi</td>
<td>D638</td>
<td>13,500</td>
<td>10,900</td>
<td>5,000</td>
<td>5,000</td>
<td>1,450</td>
<td>2,100</td>
<td>1,500</td>
</tr>
<tr>
<td>3 Tensile Modulus of Elasticity, 73°F</td>
<td>psi</td>
<td>D638</td>
<td>500,000</td>
<td>540,000</td>
<td>920,000</td>
<td>730,000</td>
<td>210,000</td>
<td>326,000</td>
<td>250,000</td>
</tr>
<tr>
<td>4 Tensile Elongation (at break), 73°F</td>
<td>%</td>
<td>D638</td>
<td>15</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>90</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>5 Flexural Strength, 73°F</td>
<td>psi</td>
<td>D790</td>
<td>21,000</td>
<td>10,500</td>
<td>10,000</td>
<td>23,000</td>
<td>2,500</td>
<td>4,000</td>
<td>2,000</td>
</tr>
<tr>
<td>6 Flexural Modulus of Elasticity, 73°F</td>
<td>psi</td>
<td>D790</td>
<td>575,000</td>
<td>535,000</td>
<td>820,000</td>
<td>1,000,000</td>
<td>165,000</td>
<td>485,000</td>
<td>350,000</td>
</tr>
<tr>
<td>7 Shear Strength, 73°F</td>
<td>psi</td>
<td>D732</td>
<td>9,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,500</td>
<td>2,600</td>
<td>1,700</td>
</tr>
<tr>
<td>8 Compressive Strength, 10% Deformation, 73°F</td>
<td>psi</td>
<td>D695</td>
<td>21,500</td>
<td>15,500</td>
<td>15,000</td>
<td>24,000</td>
<td>3,000</td>
<td>3,400</td>
<td>3,800</td>
</tr>
<tr>
<td>9 Compressive Modulus of Elasticity, 73°F</td>
<td>psi</td>
<td>D695</td>
<td>430,000</td>
<td>342,000</td>
<td>800,000</td>
<td>1,300,000</td>
<td>110,000</td>
<td>250,000</td>
<td>225,000</td>
</tr>
<tr>
<td>10 Hardness, Rockwell; Scale as noted, 73°F</td>
<td>-</td>
<td>D785</td>
<td>M95 (R125)</td>
<td>M84</td>
<td>M93 (R125)</td>
<td>M94 (R125)</td>
<td>R44</td>
<td>R74</td>
<td>R50</td>
</tr>
<tr>
<td>11 Hardness, Durometer, Shore "D" Scale, 73°F</td>
<td>-</td>
<td>D2240</td>
<td>D85</td>
<td>-</td>
<td>D86</td>
<td>D86</td>
<td>D64</td>
<td>-</td>
<td>D65</td>
</tr>
<tr>
<td>12 Izod Impact (notched), 73°F ft. lb./in. of notch</td>
<td>ft. lb./in. of notch</td>
<td>D256 Type "A"</td>
<td>0.6</td>
<td>1.4</td>
<td>1</td>
<td>1</td>
<td>1.8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13 Coefficient of Friction (Dry vs. Steel) Dynamic</td>
<td>-</td>
<td>QTM 55007</td>
<td>0.4</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>0.15</td>
<td>0.18</td>
<td>0.1</td>
</tr>
<tr>
<td>14 Limiting PV (with 4:1 safety factor applied)</td>
<td>ft. lbs./in.² min</td>
<td>QTM 55010</td>
<td>3,000</td>
<td>8,750</td>
<td>25,000</td>
<td>-</td>
<td>20,000</td>
<td>4,500</td>
<td>8,000</td>
</tr>
<tr>
<td>15 Wear Factor "K" x 10⁻¹²</td>
<td>in.³/min/ft. lbs. hr</td>
<td>QTM 55010</td>
<td>2,400</td>
<td>62</td>
<td>800</td>
<td>-</td>
<td>38</td>
<td>200</td>
<td>85</td>
</tr>
<tr>
<td>16 Coefficient of Linear Thermal Expansion (40°F to 300°F)</td>
<td>in./in./F</td>
<td>E-831 (TMA)</td>
<td>2.8 x 10⁻⁵</td>
<td>3.3 x 10⁻⁵</td>
<td>1.7 x 10⁻⁵</td>
<td>2.5 x 10⁻⁵</td>
<td>4.9 x 10⁻⁵</td>
<td>3.0 x 10⁻⁵</td>
<td>5.7 x 10⁻⁵</td>
</tr>
<tr>
<td>17 Heat Deflection Temperature 264 psi</td>
<td>°F</td>
<td>D648</td>
<td>250</td>
<td>240</td>
<td>490</td>
<td>490</td>
<td>180</td>
<td>200</td>
<td>210</td>
</tr>
<tr>
<td>18 Tg-Glass transition (amorphous)</td>
<td>°F</td>
<td>D3418</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>19 Melting Point (crystalline) peak</td>
<td>°F</td>
<td>D3418</td>
<td>540</td>
<td>536</td>
<td>540</td>
<td>540</td>
<td>621</td>
<td>-</td>
<td>621</td>
</tr>
<tr>
<td>20 Continuous Service Temperature in Air (Max.) (1)</td>
<td>°F</td>
<td>-</td>
<td>425</td>
<td>430</td>
<td>450</td>
<td>450</td>
<td>500</td>
<td>600</td>
<td>500</td>
</tr>
<tr>
<td>21 Thermal Conductivity</td>
<td>BTU in/hr. ft.²/F</td>
<td>E1530-11</td>
<td>2</td>
<td>2.1</td>
<td>1.77</td>
<td>1.42</td>
<td>-</td>
<td>-</td>
<td>3.05</td>
</tr>
<tr>
<td>22 Dielectric Strength, Short Term</td>
<td>Volts/mil</td>
<td>D149</td>
<td>540</td>
<td>500</td>
<td>-</td>
<td>385</td>
<td>-</td>
<td>-</td>
<td>200</td>
</tr>
<tr>
<td>23 Surface Resistivity</td>
<td>ohm/square</td>
<td>ANSI/ESD STM 11.11</td>
<td>>10¹⁰</td>
<td>>10¹⁰</td>
<td>>10¹⁰</td>
<td>>10¹⁰</td>
<td>>10¹⁰</td>
<td>>10¹⁰</td>
<td>>10¹⁰</td>
</tr>
<tr>
<td>24 Dielectric Constant, 10¹ Hz</td>
<td>-</td>
<td>D150</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.65</td>
</tr>
<tr>
<td>25 Dissipation Factor, 10¹ Hz</td>
<td>-</td>
<td>D150</td>
<td>0.0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.008</td>
</tr>
<tr>
<td>26 Flammability @ 3.1 mm (1/8 in.)</td>
<td>UL 94</td>
<td>V-0</td>
<td>V-0</td>
<td>V-0</td>
<td>V-0</td>
<td>V-0</td>
<td>V-0</td>
<td>V-0</td>
<td>V-0</td>
</tr>
<tr>
<td>27 Water Absorption Immersion, 24 Hours</td>
<td>% by wt.</td>
<td>D570 (2)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.15</td>
<td>0.1</td>
<td>0.03</td>
</tr>
<tr>
<td>28 Water Absorption Immersion, Saturation</td>
<td>% by wt.</td>
<td>D570 (2)</td>
<td>0.03</td>
<td>0.09</td>
<td>0.03</td>
<td>0.03</td>
<td>0.43</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>29 Acids, Weak, acetic, dilute hydrochloric or sulfuric acid</td>
<td>%</td>
<td>@73°F</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>30 Acids, Strong, conc. hydrochloric or sulfuric acid</td>
<td>%</td>
<td>@73°F</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>31 Alkalis, Weak, dilute ammonia or sodium hydroxide</td>
<td>%</td>
<td>@73°F</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>32 Alkalis, Strong, strong ammonia or sodium hydroxide</td>
<td>%</td>
<td>@73°F</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>33 Hydrocarbons-Aromatic, benzene, toluene</td>
<td>%</td>
<td>@73°F</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>34 Hydrocarbons-Aliphatic, gasoline, hexane, grease</td>
<td>%</td>
<td>@73°F</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>35 Ketones, Esters, acetone, methyl ethyl ketone</td>
<td>%</td>
<td>@73°F</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>36 Ethers, diethyl ether, tetrahydrofuran</td>
<td>%</td>
<td>@73°F</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>37 Chlorinated Solvents, methylene chloride, chloroform</td>
<td>%</td>
<td>@73°F</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>38 Alcohols, methanol, ethanol, anti-freeze</td>
<td>%</td>
<td>@73°F</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>39 Continuous Sunlight</td>
<td>%</td>
<td>@73°F</td>
<td>L</td>
<td>L</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>40 FDA Compliance</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>41 Relative Cost (4)</td>
<td>$$$$$</td>
<td>$$$$$</td>
<td>$$$$$</td>
<td>$$$$$</td>
<td>$$$$$</td>
<td>$$$$$</td>
<td>$$$$$</td>
<td>$$$$$</td>
<td>$$$$$</td>
</tr>
<tr>
<td>42 Relative Machinability (1-10, 1=Easier to Machine)</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Fluorosint® 135</td>
<td>Fluorosint® 500</td>
<td>Quadrant PC</td>
<td>Ketron® 1000 PEEK</td>
<td>Ketron® GF30 PEEK</td>
<td>Ketron® CM GF30 PEEK</td>
<td>Ketron® CA30 PEEK</td>
<td>Ketron® CM CA30 PEEK</td>
<td>Ketron® HPV PEEK</td>
<td>Ketron® CM HPV PEEK</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Compression Molded</td>
<td>Compression Molded</td>
<td>Exuded</td>
<td>Exuded</td>
<td>Exuded</td>
<td>Compression Molded</td>
<td>Exuded</td>
<td>Compression Molded</td>
<td>Exuded</td>
<td>Compression Molded</td>
</tr>
<tr>
<td>1</td>
<td>1.91</td>
<td>2.32</td>
<td>1.2</td>
<td>1.31</td>
<td>1.51</td>
<td>1.59</td>
<td>1.41</td>
<td>1.42</td>
<td>1.44</td>
</tr>
<tr>
<td>2</td>
<td>1.30</td>
<td>1.10</td>
<td>10.50</td>
<td>16.00</td>
<td>14.00</td>
<td>7.40</td>
<td>19.00</td>
<td>16.00</td>
<td>11.00</td>
</tr>
<tr>
<td>3</td>
<td>370.00</td>
<td>300.00</td>
<td>320.00</td>
<td>630.00</td>
<td>1,000,000</td>
<td>850.00</td>
<td>1,100,000</td>
<td>1,400,000</td>
<td>850.00</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>30</td>
<td>100</td>
<td>40</td>
<td>2</td>
<td>1.0</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2,500</td>
<td>2,200</td>
<td>13,000</td>
<td>25,000</td>
<td>23,000</td>
<td>12,000</td>
<td>25,750</td>
<td>23,000</td>
<td>27,500</td>
</tr>
<tr>
<td>6</td>
<td>300,000</td>
<td>500,000</td>
<td>350,000</td>
<td>600,000</td>
<td>1,000,000</td>
<td>900,000</td>
<td>1,250,000</td>
<td>1,000,000</td>
<td>1,100,000</td>
</tr>
<tr>
<td>7</td>
<td>2,500</td>
<td>2,100</td>
<td>9,200</td>
<td>8,000</td>
<td>14,000</td>
<td>-</td>
<td>15,000</td>
<td>11,000</td>
<td>10,000</td>
</tr>
<tr>
<td>8</td>
<td>7,000</td>
<td>4,000</td>
<td>11,500</td>
<td>20,000</td>
<td>22,000</td>
<td>18,000</td>
<td>29,000</td>
<td>28,000</td>
<td>28,000</td>
</tr>
<tr>
<td>9</td>
<td>200,000</td>
<td>250,000</td>
<td>300,000</td>
<td>500,000</td>
<td>550,000</td>
<td>500,000</td>
<td>-</td>
<td>580,000</td>
<td>500,000</td>
</tr>
<tr>
<td>10</td>
<td>R80</td>
<td>R55</td>
<td>M75 (R126)</td>
<td>M100 (R126)</td>
<td>M102 (R126)</td>
<td>M103 (R126)</td>
<td>M102</td>
<td>M108 (R125)</td>
<td>M85</td>
</tr>
</tbody>
</table>

Key:
- A = Acceptable Service
- L = Limited Service
- U = Unacceptable
- GTM = Quadrant Test Method

NOTE: Property data shown are typical average values. A dash (-) indicates insufficient data available for publishing.
Product Description

<table>
<thead>
<tr>
<th>Mechanical</th>
<th>Electrical</th>
<th>Thermal</th>
<th>Chemical (3)</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Units</td>
<td>Test Method ASTM</td>
<td>Quadrant PSU</td>
<td>Duratron® U1000 PEI</td>
<td>Duratron® U2300 PEI</td>
</tr>
<tr>
<td>Specific Gravity, 73°F.</td>
<td>-</td>
<td>D792</td>
<td>1.24</td>
<td>1.28</td>
</tr>
<tr>
<td>Tensile Strength, 73°F.</td>
<td>psi</td>
<td>D638</td>
<td>10,200</td>
<td>17,000</td>
</tr>
<tr>
<td>Tensile Modulus of Elasticity, 73°F.</td>
<td>psi</td>
<td>D638</td>
<td>390,000</td>
<td>500,000</td>
</tr>
<tr>
<td>Tensile Elongation (at break), 73°F.</td>
<td>%</td>
<td>D638</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Flexural Strength, 73°F.</td>
<td>psi</td>
<td>D790</td>
<td>15,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Flexural Modulus of Elasticity, 73°F.</td>
<td>psi</td>
<td>D790</td>
<td>400,000</td>
<td>500,000</td>
</tr>
<tr>
<td>Shear Strength, 73°F.</td>
<td>psi</td>
<td>D732</td>
<td>9,000</td>
<td>14,000</td>
</tr>
<tr>
<td>Compressive Strength, 10% Deformation, 73°F.</td>
<td>psi</td>
<td>D695</td>
<td>13,000</td>
<td>22,000</td>
</tr>
<tr>
<td>Compressive Modulus of Elasticity, 73°F.</td>
<td>psi</td>
<td>D695</td>
<td>375,000</td>
<td>480,000</td>
</tr>
<tr>
<td>Hardness, Rockwell, Scale as noted, 73°F.</td>
<td>-</td>
<td>D785</td>
<td>M82 (R128)</td>
<td>M112 (R125)</td>
</tr>
<tr>
<td>Hardness, Durometer, Shore “D” Scale, 73°F.</td>
<td>-</td>
<td>D2240</td>
<td>D80</td>
<td>D86</td>
</tr>
<tr>
<td>Izod Impact (notched), 73°F ft. lb./in. of notch</td>
<td>ft. lb./in. of notch</td>
<td>D256 Type “A”</td>
<td>1.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Coefficient of Friction (Dry vs. Steel) Dynamic</td>
<td>-</td>
<td>QTM 55007</td>
<td>-</td>
<td>0.42</td>
</tr>
<tr>
<td>Limiting PV (with 4:1 safety factor applied)</td>
<td>ft. lbs./in.° min</td>
<td>QTM 55007</td>
<td>-</td>
<td>1,875</td>
</tr>
<tr>
<td>Wear Factor “K” x 10-8</td>
<td>in.° min/ft. lbs. hr.</td>
<td>QTM 55010</td>
<td>-</td>
<td>2,900</td>
</tr>
<tr>
<td>Coefficient of Linear Thermal Expansion (~40°F to 300°F)</td>
<td>in./in.°F</td>
<td>E-831 (TMA)</td>
<td>3.1 x 10-5</td>
<td>3.1 x 10-5</td>
</tr>
<tr>
<td>Heat Deflection Temperature 264 psi</td>
<td>°F</td>
<td>D648</td>
<td>340</td>
<td>400</td>
</tr>
<tr>
<td>TG-Glass transition (amorphous)</td>
<td>°F</td>
<td>D3418</td>
<td>374</td>
<td>410</td>
</tr>
<tr>
<td>Melting Point (crystalline) peak</td>
<td>°F</td>
<td>D3418</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Continuous Service Temperature in Air (Max.) (1)</td>
<td>°F</td>
<td>-</td>
<td>300</td>
<td>340</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>BTU in/hr. ft.°F</td>
<td>E1530-11</td>
<td>1.8</td>
<td>1.23</td>
</tr>
<tr>
<td>Dielectric Strength, Short Term</td>
<td>Volts/mil</td>
<td>D149</td>
<td>425</td>
<td>830</td>
</tr>
<tr>
<td>Surface Resistivity</td>
<td>ohm/square</td>
<td>ANSI/ESD STM 11.11</td>
<td>>1012</td>
<td>>1012</td>
</tr>
<tr>
<td>Dielectric Constant, 101 Hz</td>
<td>-</td>
<td>D150</td>
<td>3.14</td>
<td>3.15</td>
</tr>
<tr>
<td>Dissipation Factor, 101 Hz</td>
<td>-</td>
<td>D150</td>
<td>0.0008</td>
<td>0.0013</td>
</tr>
<tr>
<td>Flammability @ 3.1 mm (1/8 in.)</td>
<td>UL 94</td>
<td>HB</td>
<td>V-0</td>
<td>V-0</td>
</tr>
<tr>
<td>Water Absorption Immersion, 24 Hours</td>
<td>% by wt.</td>
<td>D570 (2)</td>
<td>0.3</td>
<td>0.25</td>
</tr>
<tr>
<td>Water Absorption Immersion, Saturation</td>
<td>% by wt.</td>
<td>D570 (2)</td>
<td>0.6</td>
<td>1.25</td>
</tr>
<tr>
<td>Acids, Weak, acetic, dilute hydrochloric or sulfuric acid</td>
<td>@73°F</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Acids, Strong, conc. hydrochloric or sulfuric acid</td>
<td>@73°F</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Alkalis, Weak, dilute ammonia or sodium hydroxide</td>
<td>@73°F</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Alkalis, Strong, strong ammonia or sodium hydroxide</td>
<td>@73°F</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Hydrocarbons-Aromatic, benzene, toluene</td>
<td>@73°F</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Hydrocarbons-Aliphatic, gasoline, hexane, grease</td>
<td>@73°F</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Ketones, Esters, acetone, methyl ethyl ketone</td>
<td>@73°F</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Ethers, diethyl ether, tetrahydrofuran</td>
<td>@73°F</td>
<td>L</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Chlorinated Solvents, methylene chloride, chloroform</td>
<td>@73°F</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Alcohols, methanol, ethanol, anti-freeze</td>
<td>@73°F</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Continuous Sunlight</td>
<td>@73°F</td>
<td>L</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>FDA Compliance</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Relative Cost (4)</td>
<td>$$$</td>
<td>$$$</td>
<td>$$$</td>
<td>$$$</td>
</tr>
<tr>
<td>Relative Machinability (1-10, 1=Easier to Machine)</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>
Extruded PAI materials can benefit from a post-machine cure cycle. Duratron® materials are particularly useful in applications requiring low outgassing and high electrical properties.

Electrical Grade PAI

<table>
<thead>
<tr>
<th>Grade</th>
<th>T4203</th>
<th>T4503</th>
<th>T4301</th>
<th>T4501</th>
<th>T4540</th>
<th>T5530</th>
<th>T5730</th>
<th>T7130</th>
<th>T7530</th>
<th>SEMITRON® ESD 520HR</th>
<th>DURATRON® D7000</th>
<th>DURATRON® D7015G</th>
<th>DURATRON® CU60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extruded</td>
<td></td>
</tr>
<tr>
<td>Electrical Grade</td>
<td></td>
</tr>
<tr>
<td>Bearing Grade</td>
<td></td>
</tr>
</tbody>
</table>

Key

- **$** = Least Expensive
- **$$$$$$ = Most Expensive
- **A** = Acceptable Service
- **L** = Limited Service
- **U** = Unacceptable
- **QTM** = Quadrant Test Method

UL 94 Test

The UL 94 Test is a laboratory test and does not relate to actual fire hazard. Contact Quadrant for specific UL “Yellow Card” recognition number.

Average Values

- 900,000 = Average Values
- 10 = Average Values
- 0.3 = Average Values
- 10000 = Average Values
- 0.6 = Average Values
- 0.8 = Average Values

Notes

1. Data represent Quadrant's estimated maximum long term service temperature based on practical field experience.
2. Electrical and bearing grades are available in 1.0mm thick. Extruded grades are available in 1.5mm thick.
3. Chemical resistance data are for little or no applied stress. Increased stress, especially localized may result in more severe attack. Exemplars of common chemicals are included.
4. Relative cost of material profiled in this brochure ($ = Least Expensive and $$$$$$ = Most Expensive)
5. Estimated rating based on available data. The UL 94 Test is a laboratory test and does not relate to actual fire hazard. Contact Quadrant for specific UL “Yellow Card” recognition number.

Table

<table>
<thead>
<tr>
<th>Grade</th>
<th>T4203</th>
<th>T4503</th>
<th>T4301</th>
<th>T4501</th>
<th>T4540</th>
<th>T5530</th>
<th>T5730</th>
<th>T7130</th>
<th>T7530</th>
<th>SEMITRON® ESD 520HR</th>
<th>DURATRON® D7000</th>
<th>DURATRON® D7015G</th>
<th>DURATRON® CU60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extruded</td>
<td></td>
</tr>
<tr>
<td>Electrical Grade</td>
<td></td>
</tr>
<tr>
<td>Bearing Grade</td>
<td></td>
</tr>
</tbody>
</table>

Notes

- Extruded PAI materials can benefit from a post-machine cure cycle.
Learn more online at www.quadrantplastics.com

Quadrant has extensive product and machining resources available online. Our website is a portal to a wealth of technical data and the easiest way to engage our application specialists. Our team stands ready to help offer solutions to your toughest problems.